

You may assume all algebras are finite-dimensional over a field \mathbb{k} . You may attempt the exercises with the additional assumption of \mathbb{k} being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes = \otimes_{\mathbb{k}}$. For a module X over some algebra, denote by $\text{add}(X)$ the full subcategory of the module category consisting of finite direct sums of direct summands of X (up to isomorphism).

Ex 1. Suppose that $M, N \in \text{mod } A$. Recall that the **projective dimension** of a module M is

$$\text{pdim } M := \inf \{d \geq 0 \mid 0 \rightarrow P^d \rightarrow \cdots \rightarrow P^0 \rightarrow M \rightarrow 0 \text{ if a projective resolution of } M\}$$

- (1) Use induced long exact sequence (from ses) to show that $\text{pdim } M = d$ if, and only if, $\text{Ext}_A^{d+1}(M, X) = 0$ for all $X \in \text{mod } A$ and $\text{Ext}_A^d(M, X) \neq 0$ for some $X \in \text{mod } A$.
- (2) Show that, when $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is a ses, then $\text{pdim } Z \leq \max(\text{pdim } Y, 1 + \text{pdim } X)$, and equality holds when $\text{pdim } Y \neq \text{pdim } X$.
- (3) Show that if $\text{Ext}_A^i(M, A) = 0$ for all $i \geq 1$, then $\text{Ext}_A^i(M, N) = 0$ if N is of finite projective dimension.
- (4) Let I be a two-sided ideal of A such that I is projective as a right A -module, and take $B := A/I$. Show that $\text{Tor}_d^A(A/I, A/I) = 0$ for all $d \geq 1$.

Ex 2. Suppose that $M, N \in \text{mod } A$.

- (1) Show that when M is simple, we have $\text{Hom}_A(\Omega(M), N) \cong \text{Ext}_A^1(M, N) \cong \text{Hom}_A(M, \Omega^{-1}(N))$.
- (2) Show that the same holds when N is simple.
- (3) Show that when every projective A -module is injective, then $\text{Ext}_A^1(M, N) \cong \underline{\text{Hom}}_A(M, N)$ where $\underline{\text{Hom}}_A(M, N)$ is the quotient of $\text{Hom}_A(M, N)$ by all homomorphisms factoring through a projective module.

Let $\underline{\text{mod}}A$ be the category whose objects are the same as that of $\text{mod } A$ and morphism sets from X to Y given by $\underline{\text{Hom}}_A(X, Y)$.

- (4) Show that we have $M \oplus P \cong M$ in $\underline{\text{mod}}A$ for all projective A -module P .
- (5) Suppose that every projective A -module is injective, and vice versa. By considering the syzygy $\Omega(N)$ and an appropriate pullback square, show that every $f \in \text{Hom}_A(M, N)$ corresponds to some $f' \in \text{Hom}_A(M', N)$ such that
 - $M \cong M'$ in $\underline{\text{mod}}A$,
 - f' is surjective (as A -module homomorphism),
 - f and f' are in the same class in $\underline{\text{Hom}}_A(M, N)$.

Ex 3. Let C_2 be the cyclic group of order 2, and V_4 be the Klein-4 group. For a finite group G , the group algebra $\mathbb{k}G$ over \mathbb{k} is the algebra whose underlying \mathbb{k} -space has basis G , and the multiplication is given by extending that of G .

- (1) Compute (with reasoning) bound path algebra that is Morita equivalent to $\mathbb{C}C_2$.
- (2) Compute (with reasoning) (with reasoning) bound path algebra that is Morita equivalent to $\mathbb{k}C_2$, where \mathbb{k} is an algebraically closed field of characteristic 2.
- (3) For a finite-dimensional algebra A and $n \geq 1$ a positive integer, show that the matrix algebra $M_n(A)$ consisting of n -by- n matrices with entries in A is Morita equivalent to A .
- (4) Find an example of an algebra A over a non-algebraically closed field such that A is not Morita equivalent to a bound path algebra. Explain your reasoning.
Hint: You may find a previous assignment useful.
- (5) Let \mathbb{k} be a field of characteristic 2. Then $\mathbb{k}V_4$ has a unique simple \mathbb{k} (up to isomorphism) where every $g \in V_4$ acts as identity, and $\dim_{\mathbb{k}} \text{Ext}_{\mathbb{k}V_4}^1(\mathbb{k}, \mathbb{k}) = 2$. Find the Ext-quiver of $\mathbb{k}V_4$.
- (6) Let \mathbb{k} be a field of characteristic 2. Let $M = M_1 \xrightarrow[M_\beta]{M_\alpha} M_2$ be a representation of the Kronecker quiver $1 \xrightarrow[\beta]{\alpha} 2$. Find a construction that equip M with a structure of $\mathbb{k}V_4$ -module that preserves indecomposability. (You may use the classification of indecomposable representation over the Kronecker quiver if you want.)

Deadline: 23rd January, 2026

Submission: In lecture or E-mail to (replace at by @) aaron.chan at math.nagoya-u.ac.jp