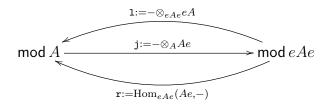
You may assume all algebras are finite-dimensional over a field k. You may attempt the exercises with the additional assumption of k being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes = \otimes_{\mathbb{k}}$. For a module X over some algebra, denote by $\mathsf{add}(X)$ the full subcategory of the module category consisting of finite direct sums of direct summands of X (up to isomorphism).

Ex 1. Let e be an idempotent of a finite-dimensional algebra A. Consider the functors



- (1) Show that there are natural isomorphisms $jr \cong Id_{mod eAe} \cong j1$.
- (2) Show that 1(P) ∈ add(eA) for all projective eAe-module P. Hint: Consider first the case when P = fAe is an indecomposable projective eAe-module, where f is some primitive idempotent of A. ** If you only present this as a consequence of property of adjointness, no mark will be awarded.
- (3) For $N \in \text{mod } eAe$, show that $M := 1(N) = N \otimes_{eAe} eA$ satisfies the following condition:

There is an exact sequence
$$P_1 \xrightarrow{f} P_0 \xrightarrow{\pi} M \to 0$$
 with $P_1, P_0 \in \mathsf{add}(eA)$. (†)

- (4) Let $M \in \text{mod } A$. Show that M satisfies (†) implies that $1j(M) = Me \otimes_{eAe} eA \cong M$. Hint: Use (2) and find an appropriate commutative diagram.
- (5) Show that 1, j defines an equivalence of categories $pres(eA) \simeq mod eAe$, where pres(eA) is the full subcategory of mod A consisting of modules M satisfying (†).

Ex 2.

- (1) Show that $\operatorname{Hom}_A(M,N) \cong D(M \otimes_A DN)$ as vector spaces.
- (2) Let $P_{\bullet} = (P_i, d_i : P_i \to P_{i-1})_{i \geq 0}$ be a projective resolution of an A-module M, and define

$$\operatorname{Tor}_1^A(M,N) := H_1(P_{\bullet} \otimes_A N) = \frac{\operatorname{Ker}(d_1 \otimes_A N)}{\operatorname{Im}(d_2 \otimes_A N)}$$

the first homology group of the complex $P_{\bullet} \otimes_A N$. Show that $\operatorname{Ext}_A^1(M,N) \cong D \operatorname{Tor}_1^A(M,DN)$ as \mathbb{k} -vector spaces.

- (3) Show that $D \operatorname{Hom}_A(M, A) \cong M \otimes_A DA$ as right A-modules.
- (4) Let ${}_{A}X_{B}$ be an A-B-bimodule. If M is a C-A-bimodule and N is a C-B-bimodule. Show that $\operatorname{Hom}_{C^{\operatorname{op}}\otimes B}(M\otimes_{A}X,N)\cong \operatorname{Hom}_{C^{\operatorname{op}}\otimes A}(M,\operatorname{Hom}_{B}(X,N))$ as vector spaces.

- (5) Let $B := A^{op} \otimes A$. Show that $\operatorname{Hom}_B(A, B) \cong \operatorname{Hom}_A(DA, A)$ as A-A-bimodules. Hint: $B \cong (DDA) \otimes A \cong \operatorname{Hom}_{\Bbbk}(DA, A)$ as B-modules.
- (6) In the setup of (5), show that $\operatorname{Ext}_B^1(A,B) \cong \operatorname{Ext}_A^1(DA,A)$.

Ex 3. Consider the quiver algebra $A = \mathbb{k}Q/I$ given by

$$Q: 1 \xrightarrow{\beta_1} 2 \xrightarrow{\beta_2} 3 \xrightarrow{\beta_3} 4, \quad I = (\beta_3 \alpha_3, \alpha_i \alpha_{i+1}, \beta_{i+1} \beta_i, \beta_i \alpha_i - \alpha_{i+1} \beta_{i+1} \mid i = 1, 2)$$

For $i \in \{1, 2, 3, 4\}$, let $\Delta(i) := P_i/\alpha_i A$ (with $\alpha_4 := 0$ as a convention).

- (1) Describe the Loewy filtration of each indecomposable projective A-module P(i) with $1 \le i \le 4$. In particular, show that each of these has a simple socle, i.e. $socP(i) \cong S(j_i)$ for some $1 \le j_i \le 4$.
- (2) Write down the minimal projective resolution of $\Delta(1)$ and determine its projective dimension.
- (3) Show that $\operatorname{Ext}_A^k(\Delta(i), \Delta(j)) = 0$ whenever i > j for any $k \ge 0$.
- (4) Show that $\operatorname{Ext}_A^k(\Delta(i), \Delta(j)) = 0$ whenever k > 3 for any i, j.
- (5) Compute $\dim_{\mathbb{K}} \operatorname{Ext}_{A}^{k}(\Delta(i), \Delta(j))$ for all possible i, j, k. Show your working.

Deadline: 19th December, 2025