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Convention

Throughout the course, k will always be a field. All rings are unital and associative. We only really
work with artinian rings (but sometimes noetherian is also OK). We always compose maps from right
to left.

1 Reminder on some basics of rings and modules

Definition 1.1. Let R be a ring. A right R-module M is an abelian group (M,+) equipped with a
(linear) R-action on the right of M - : M x R — M, meaning that for all r,s € R and m,n € M, we
have

e m-1=m,

e (m+n)-r=m-r+n-r,
em-(r+s)=m-r+m-s,
o m(sr) = (ms)r.

Dually, a left R-module is one where R acts on the left of M (details of definition left as exercise).
Sometimes, for clarity, we write M4 for right A-module and sM for left A-module.

Note that, for a commutative ring, the class of left modules coincides with that of right modules.

Example 1.2. R is naturally a left, and a right, R-module. Both are free R-module of rank 1. Some-
times this is also called reqular modules but it clashes with terminology used in quiver representation
and so we will avoid it.

In general, a free R-module F is one where there is a basis {x;}ic; such that for all x € F, © =
Y icr xir; with r; € R. We only really work with free modules of finite rank, i.e. when the indexing
set I is finite. In such a case, we write R™.

Convention. All modules are right modules unless otherwise specified.

Definition 1.3. Suppose R is a commutative ring. A ring A is called an R-algebra if there is a (unital)
ring homomorphism 6 : R — A with image 6(R) being in the center Z(A) := {z € A | za = az Va € A}
of A. In such a case, A is an R-module and so we simply write ar for a € A,r € R instead of af(r).

An (unital) R-algebra homomorphism f : A — A’ is a (unital) ring homomorphism f that intertwines
R-action, i.e. f(ar) = f(a)r.

The dimension of a k-algebra A is the dimension of A as a k-vector space; we say that A is finite-
dimensional if dim A < co.



Note that commutative ring theorists usually use dimension to mean Krull dimension, which has a
completely different meaning.

Example 1.4. FEvery ring is a Z-algebra.
The matriz ring M, (R) given by n-by-n matrices with entries in R is an R-algebra.

We will only really work with k-algebras, where k is a field. Most of the time, we will also assume k is
algebraically closed for simplicity. But it worth reminding there are many interesting R-algebras for
different R, such as group algebra. Recall that the characteristic of R, denoted by char R, is 0 if the
additive order of the identity 1 is infinite, or else the additive order itself.

Example 1.5. Let G be a finite (semi)group and R a commutative ring. Let A := R[G]| be the free
R-module with basis G, i.e. every a € A can be written as the formal R-linear combination deg Agg
with Ay € R. Then group multiplication extends (R-linearly) to a ring multiplication on R[G], making
A an R-algebra.

Example 1.6. Recall that the direct product of two rings A, B is the ring Ax B = {(a,b) |a € A,b €
B} with unit 1axp = (14,1p). It is straightforward to check that if A, B are R-algebras, then A x B
1s also an R-algebra.

Example 1.7. Suppose that A is a k-algebra and B is a k-subspace of A containing 14 and closed
under multiplication. Then B is also a k-algebra. We call such a B a subalgebra of A. For a concrete
example, the space of diagonal matrices forms a subalgebra of My, (k).

Definition 1.8. A map f : M — N between right R-modules M, N is a homomorphism if it is a
homomorphism of abelian groups (i.e. f(m +n) = f(m)+ f(n) for all m,n € M) that intertwines
R-action (i.e. f(mr) = f(m)r for allm € M and r € R). Denote by Homgr(M, N) the set of all
R-module homomorphisms from M to N. We also write Endg(M) := Hompg (M, M).

Lemma 1.9. Hompg(M,N) is an abelian group with (f + g)(m) = f(m) + g(m) for all f,g €
Homp(M,N) and all m € M. If R is commutative, then Homp(M,N) is an R-module, namely,
for a homomorphism f: M — N and r € R, the homomorphism fr is given by m — f(mr).

Definition 1.10. Endg(M) is an associative ring where multiplication is given by composition and
identity element being idys. We call this the endomorphism ring of M.

Lemma 1.11. If A is an R-algebra over a commutative ring R, then any right A-module is also an
R-module, and Hom (M, N) is also an R-module (hence, Endg(M) is an R-algebra).

Example 1.12. A = End4(A) given by a — (14 — a) is an isomorphism of rings (or of R-algebras
if A is an R-algebra). Note that if we work with left modules, then A = End4(4A)°P, where (—)°P
denotes the opposite ring given by the same underlying set with reverse direction of multiplication, i.e.
a-opb:=>b-a.

Recall that an R-module M is finitely generated if there exists as surjective homomorphism R"™ — M,
or equivalently, there is a finite set X C M such that for any m € M, we have m =} _ ar, for
some 1, € R.

Notation. We write mod A for the collection of all finitely generated right A-modules.



2 Indecomposable modules and Krull-Schmidt property

We recall two types of building blocks of modules. The first one is indecomposability.

Definition 2.1. Let M be a R-module and N1, ..., N, be submodules. We say that M is the direct
sum N1 @---@®N, of the N;’s if M = N1 +---+ N, and N;N(Ny+-- -+N5.+- -+ N;) = 0. Equivalently,
every m € M can be written uniquely as ny +ng + - -+ + n, with n; € N; for all i. In such a case, we
write M =2 N1 & --- @ N,.. Fach N; is called a direct summand of M.

M s called indecomposable if M = Ny ® Ny implies Ny =0 or No = 0.

We say that M = @;", M; is an indecomposable decomposition (or just decomposition for short if
context is clear) of M if each M; is indecomposable.

Convention. We write (nq,...,n,) instead of n1+- - -+n, with n; € N; for a direct sum N1@®---BN,.
We will only work with direct sum with finitely many indecomposable direct summands.

Example 2.2. Suppose that Rg is indecomposable as an R-module. If F is a free R-module of rank
n, then R®" := R® R® --- ® R (with n copies of R) is a decomposition of F.

Example 2.3. Consider the matriz ring A := Mat, (k) over a field k. Let V be the ‘row space’, i.e.
V = {(vj)icj<n | v; € k} where X € Mat,(k) acts on v € V by v — vX (matriz multiplication
from the right). Since for any pair u,v € V, there always exist X so that v = uX, we see that there
is no other A-submodule of V' other than 0 or V itself. Hence, V is an indecomposable A-module.
In particular, the n different ways of embedding a row into an n-by-n-matriz yields an A-module
isomorphism between V™ =2 A 4, which is the decomposition of the free A-module A,.

The above example shows indecomposability by showing that V is a simple A-module, which is
a stronger condition that we will come back later. Let us give an example of a different type of
indecomposable (but non-simple) modules.

Example 2.4. Let A = k[z]/(2") the truncated polynomial ring for some k > 2. This is an al-
gebra generated by (14 and) x, and an A-module is just a k-vector space V' equipped with a linear
transformation p, € Endy (V) (representing the action of x) such that pk = 0.

Consider a 2-dimensional space V = k{vi,v2} and a linear transformation

(00
Pe=1\1 0)"

By definition (avy + bvy)x = (a + b)ve, and so any submodules must contains kva, i.e. vo spans a
unique non-zero submodules. If, on the contrary, V is not indecomposable, then we have V.= Uy @ Us
for (at least) two non-zero submodules Uy, Us. But vy must be contained in any submodule of V', hence,
we have vo € Uy NUs, i.e. Uy NUs # 0 — a contradiction not decomposability.

Proposition 2.5. There is a canonical R-module isomorphism

(a3

HOH]A(@TZl Mja@?:l Nl) ®i,j HOHIA(M]',NZ')
f (mifej)i

where v; : Nj — @j Nj is the canonical inclusion for all j and m; : @, M; — M; is the canonical
projection for all i.

One can think of the right-hand space above as the space of m-by-n matrix with entries in each
corresponding Hom-space.



Recall that an idempotent e € R is an element with e? = e. For example, the identity map
idys € End4(M) (the unit element of the endomorphism ring) is an idempotent. From the previ-
ous proposition, we see that for a decomposition M = N1 ® N2, we have idempotents

ei M T N % M
for both 7 = 1,2. Hence, being decomposable implies existence of multiple idempotents; this turns out
characterise indecomposability completely.
Proposition 2.6. Let A be a finite-dimensional algebra and M be a finite-dimensional non-zero A-
module. Then the following hold.
(1) (Fitting’s lemma) For any f € Enda(M), there exists n > 1 such that M = Ker(f") @ Im(f™).

(2) The following are equivalent.
e M 1is indecomposable.

e The endomorphism algebra End (M) does not contain any idempotents except 0 and idyys.
e Every homomorphism f € Endy(M) is either an isomorphism or is nilpotent.
e Endy (M) is local (see below).

Remark 2.7. Tt is known that if M is only artinian or only noetherian, then Fitting’s lemma (and
hence part (2)) fails. Nevertheless, in general, the proposition still hold for M that is both artinian
and noetherian.

Let us briefly recall various characterisation of local rings.

Definition 2.8. A ring R is local if it has a unique mazimal right (equivalently, left; equivalently,
two-sided) ideal.

Remark 2.9. When R is non-commutative, the ‘non-invertible elements’ are the ones that do not admit
(right) inverses.

Lemma 2.10. The following are equivalent for a finite-dimensional algebra A.
o A is local (i.e. has a unique maximal rTight ideal).
e Non-invertible elements of A form a two-sided ideal.
e For any a € A, one of a or 1 — a is invertible.
e 0 and 14 are the only idempotents of A.

o A/J(A) = k as rings, where J(A) is the two-sided ideal of A given by the intersection of all
mazximal right (equivalently, left) ideals.

Example 2.11. Consider the upper triangular 2-by-2 matriz ring

k k i €EkVi<jg
A= (O k> :{(ai,j)1<i<j<2 s P }

Qi = 0V >y
Let M = {(z,y) € k?} be the 2-dimensional space where A acts as matriz multiplication (on the
right). Suppose f € Enda(M), say, f(x,y) = (ax + by, cx + dy) for some a,b,c,d € k. Then being an
A-module homomorphisms means that

(az + by, cx + dy) (g Z)) =f ((:c, Y) (g Z))) = (auz + bvx + wy, cuz + dvz + dwy)
for all u,v,w,z,y € k. This means that

{buy = bvx + bwy

avz + bvy + cxw = cux + dvx



The first line yields b = 0, and the second line yields ¢ = 0 = b and a = d. In other words,
End4 (M) =k which is clearly a local algebra. Hence, M is indecomposable.

A natural question is to ask when is a decomposition of modules, if it exists, unique up to permuting
the direct summands.

Definition 2.12. We say that an indecomposable decomposition M = @." | M; is unique if any other
indecomposable decomposition M = @?:1 N; implies that m = n and there is a permutation o such
that M; = N,y for all 1 < i < m. mod A is said to be Krull-Schmidt if every (finitely generated)
A-module M admits a unique indecomposable decomposition.

Theorem 2.13. For a finite-dimensional algebra A, mod A is Krull-Schmidt.

Remark 2.14. This is a special case of the Krull-Schmidt theorem - whose proof we will omit to save
time.

Theorem 2.15 (Krull-Schmidt). Suppose M = @;", M; is an indecomposable decomposition of
M. If End o (M;) is local for all 1 <i < m, then the decomposition of M is unique.

Remark 2.16. Some people refer to this result as Krull-Remak-Schmidt theorem.



3 Simple modules, Schur’s lemma

Definition 3.1. Let M be an R-module.
(1) M is simple if M # 0, and for any submodule L C M, we have L =0 or L = M.

(2) M is semisimple if it is a direct sum of simples.
Remark 3.2. In the language of representations, simple modules are called irreducible representations,
and semisimple modules are called completely reducible representations.

Remark 3.3. Note that a module is semisimple if and only if every submodule is a direct summand.

Example 3.4. Consider the matriz ring A := Mat, (k) over a field k. Then the row-space repre-
sentation V is an n-dimensional simple module. Since Ax = VO, we have that Aa is a semisimple
module.

Example 3.5. The ring of dual numbers is A := k[z]/(x?). The module () is simple. The regular
representation A is non-simple (as (x) = AxA is a non-trivial submodule). It is also not semisimple.
Indeed, () is a submodule of A, and the quotient module can be described by kv where v =1+ (x). If A
1s semisimple, then the 1-dimensional space kv is isomorphic to a submodule of A. Such a submodule
must be generated by a + bx (over A) for some a,b € k. If a # 0, then (a + bx)A = A. Soa =0, and
kv = (x), a contradiction.

Lemma 3.6. S is a simple A-module if and only if for any non-zero m € S, we have mA := {ma |
a € A} = S. In particular, simple modules are cyclic (i.e. generated by one element).

Let us see how one can find a simple module.

Definition 3.7. Let M be an A-module and take any m € M. The annihilator of m (in A) is the set
Anng(m) == {a € A | ma = 0}.

Note that Ann(m) is a right ideal of A - hence, a right A-module.

Lemma 3.8. For a simple A-module S and any non-zero m € S, we have S = A/ Anna(m) as A-
module. In particular, if A is finite-dimensional, then every simple A-module is also finite-dimensional.

Suppose [ is a two-sided ideal of A. Then we have a quotient algebra B := A/I. For any B-module
M, we have a canonical A-module structure on M given by ma := m(a 4+ I). This is (somewhat
confusingly) the restriction of M along the algebra homomorphism A — A/I.

Lemma 3.9. Suppose B := A/I is a quotient algebra of A by a strict two-sided ideal I # A. If
S € mod B is simple, then S is also simple as A-module

Proof This follows from the easy observation that any a B-submodule of Sp is also a A-submodule
of S4 under restriction. ]

The following easy, yet fundamental, lemma describes the relation between simple modules. Recall that
a division ring is one where every non-zero element admits an inverse (but the ring is not necessarily
commutative).

Lemma 3.10 (Schur’s lemma). Suppose S, T are simple A-modules, then

a division ring, if S =T,

0, otherwise.

Homu(S,T) = {

Remark 3.11. Note that if A is an R-algebra, then the division ring appearing is also an R-algebra
(sincg it is the endomorphism ring of an A-module). In particular, if R is an algebraically closed field
k =k, then any division k-algebra is just k itself.



Proof The claim is equivalent to saying that any f € Homy4 (S, T) is either zero or an isomorphism.
Since Im(f) is a submodule of T, simplicity of T says that Im(f) =0, i.e. f =0, or Im(f) = T. In
the latter case, we can consider Ker(f), which is a submodule of S, so by simplicity of S it is either 0
or S itself. But this cannot be S as this means f = 0, hence, Im(f) = T implies that Ker(f) =0, i.e.
f is an isomorphism. O

Example 3.12. In Ezample we showed that the upper triangular 2-by-2 matriz ring A has a
2-dimensional indecomposable module P; = {(x,y) | =,y € k?} given by ‘row vectors’. It is straightfor-
ward to check that there is a 1-dimensional (hence, simple) submodule given by Sz := {(0,vy) | y € k?}.

Consider the module Sy := P1/Sy. This is a 1-dimensional (simple) module spanned by, say, w with

A-action given by
w(® o) = wa
0 ¢/ 7

Consider a homomorphism f € Homu4(S1,S2). This will be of the form w +— (0,y) for some y € k
and has to satisfy

(0.90) = (0.9)a = flwa) = fw (1)) = ) 2) = ) = 050)

for any a,b,c € k. Hence, we must have y = 0, which means that f = 0. In particular, by Schur’s
lemma S1 2 Ss.

Lemma 3.13. Suppose that S is a simple A-module. Consider a semisimple A-module M = S1 ®
<o @Sy, with S; = S for all i. Then Endy (M) = Mat, (D), where D := End4(95).

Proof We have canonical inclusion ¢ : S; — M and projection m; : M — S;. So for f € Ends(M),
we have a homomorphism 7; fi; : S; — S;, and by Schur’s lemma, this is an element of D. Now we
have a ring homomorphism

EndA(M) — Matr(D), f — (Wiij)lgi,jgru

-
which is clearly injective. Conversely, for (a;;)i<ij<r € Mat,(D), we have an endomorphism M e
S; Ly S; NV , which yields the required surjection. O

Example 3.14. For a tautological example, take A = k to be just a field. Then we have a 1-
dimensional simple A-module S = k with End4(S®") = Mat,,(End4(k)) = Mat, (k). Note that now
we have an n-dimensional simple Mat,, (K)-module (given by the row vectors).



4 Quiver and path algebra

Definition 4.1. A (finite) quiver is a datum Q = (Qo, @1, s,t : Q1 — Qo) for finite sets Qu, Q1. The
elements of Qo are called vertices and those of Q1 are called arrows. The source (resp. target)of an
arrow a € Q1 is the vertex s(a) (resp. t(a)).

This is equivalent to specifying an oriented graph (possibly with multi-edges and loops); Gabriel coined
the term quiver as a way to emphasise the context is not really about the graph itself.

Definition 4.2. Let Q) be a quiver.
e A trivial path on Q is a “stationary walk at i”, denoted by e; for some i € Q.

e A path of Q is either a trivial path or a word ayas - - ayp of arrows with s(a;) = t(ait1).

The source and target functions extend naturally to paths, with s(e;) =i = t(e;). Two paths p, ¢ can
be concatenated to a new one pq if t(p) = s(q); note that our convention is to read from left to right.

Definition 4.3. The path algebra kQ) of a quiver Q) is the k-algebra whose underlying vector space is
given by @p:paths of Q kp, with multiplication given by path concatenation. That is x € kQ is a formal
linear combinations of paths on Q.

Note that e;e; = d; je;, where d; ; = 1 if i = j else 0. In other words, e; is an idempotent of the path
algebra k@Q. Moreover, we have an idempotent decomposition

1le = Z €;

1€Q0
of the unit element of kQ.
Example 4.4. Consider the one-looped quiver, a.k.a. Jordan quiver,

e=( ()

Then kQ has basis {a* | k > 0} (note that the trivial path at the unique vertex is the identity element).
Then k@ = klz].

An oriented cycle is a path of the form vy — v9 — --- v, — v1, i.e. starts and ends at the same vertex.
If @) does not contain any oriented cycle, we say that it is acyclic.

Proposition 4.5. kQ is finite-dimensional if, and only if, Q is finite acyclic.

Proof If there is an oriented cycle ¢, then ¢ € kQ for all k > 0, and so kQ is infinite-dimensional.
Otherwise, there are only finitely many paths on Q. O

Example 4.6. Consider the linearly oriented &n—quiver
Q=A, =122 . 20,
Then the path algebra kQ has basis {e;, o |1 <i<n,1 <j<k<n}, where o = ajoqr - Q.

Consider the upper triangular n-by-n matriz ring

0 k k = (aij)1<i<i tij €k Vi<
0 o . | T\ mehsisise) U ovis o)
00 0 k



Denote by E; ; the elementary matriz whose entries are all zero except at (i,j) where it is one. This
ring is isomorphic to kQ via E;; — e; and E; j — «; ;1 for 1 <j <k <n.

From now on, we will focus in the following setting.

Assumption 4.7. (1) Quivers are finite (i.e. finitely many vertices and arrows).

(2) Representations (equivalently, modules) are finite-dimensional.

5 Duality

For a quiver @, the opposite quiver (Q°°? has the same set of vertices with the reverse direction of
arrows, L.e. Qp° = Qo, Q) = Q1, sqer = t@, and tgor = s(.

Exercise 5.1. Show that there is a canonical isomorphism (kQ)°P = k(Q°P).
Let M be a finite-dimensional A-module. Then we have a dual space
D(M) := M™ := Homy (M, k),

which has a natural A°P-module structure, namely, (a-f)(m) := f(ma) foranya € A, f € M*,m € M.
Moreover, for an A-module homomorphism 6 : M — N, we have also an A°°-module homomorphism
0* : N* — M* with 0*(f)(m) = f(6(m)).

Lemma 5.2. There is a k-vector space isomorphism Hom 4 (M, N) = Hom gop (DN, DM).

Proof Just a straightforward check that (0*)* = 6. O

We note as a fact that D preserves indecomposability of (finite-dimensional) modules. This can
be seen using the fact that Homy (M, N) = Hom gop (DN, DM) and can be upgraded to an algebra
isomorphism for the case when N = M; then uses characterisation of indecomposable module by local
endomorphism ring.

Example 5.3. The left A-module oA yields a right A-module structure on D(A). More generally,
suppose we have a left ideal Ae of A for some element e € A, then D(Ae) is a right ideal of A.

Remark 5.4. There is another natural duality, which we will not used, between mod A and mod A°P
given by sending M to Homy (M, A). In general, this duality is different from the k-linear dual unless
A is a so-called symmetric algebra, meaning that A = DA as bimodule; in which case, Hom4(—, A)
dual is naturally isomorphic to D (as functors).

6 Representations of quiver

Definition 6.1. A k-linear representation of Q is a datum ({M;}icq,, {Matacq,) where M; is a
k-vector space for each i € Qo and My : M) — My is k-linear map for each a € Q1.

Such a representation is finite-dimensional if dimy M; < oo for all i € Qq.
Notation. For a representation M of Q, we take M, := My, --- My, for a path p = a1 ---ay.

It is easy to notice that every representation of @) is equivalent to a k@Q-module, namely,

kQ-module [[;c.o, M;

i M;}; M
representatlon ({ z}zGQ()v{ a}aEQl) A s.t. Zp:path /\pp acts as Zp )\pMp‘



Example 6.2 (Simple). For z € Qq, denote by S, (or S(z)) the representation given by putting a
1-dimensional space on x, zero on all other vertices, and zero on all arrows. This corresponds to a
1-dimensional kQ-module and so we call it the simple at x.

Note: at this stage, it is not clear if these are all the simple kQ-modules (up to isomorphism) yet.

Example 6.3 (Projective). For z € o, denote by P, (or P(x)) the representation given by
({My}yeqo: {Matacq,), where

My= € kp, and  (Ma:My—M):=> (M, —»kp ke M)
p:path with pa=q
s(p)=a,
t(p)=y

This is called the projective at x. This corresponds to the right ideal e,kQ of kQ).

Example 6.4 (Injective). Dual to the projective module construction, for x € Qq, denote by I, (or
I(z)) the representation given by ({My}yeqoy, {Matacq,), where

My= @ kp, and (Ma:M,—M):=> (M, —kp % ke M)
p:path with p=aq
s(p)=y,
t(p)=z

This is called the injective at x. This corresponds to the dual of the left ideal generated by e, i.e.
D(kQey).

Example 6.5. The representation of Q = A, given by
Ui, =05 0ok Sy Sy o 0

with a copy of k on vertices i,i+1, ..., is the uniserial kQ-module corresponding to the column space
(under the isomorphism of kQ with the lower triangular matriz ring) with non-zero entries in the k-th
row fori <k <j.

Example 6.6. Let (Q be the Jordan quiver with unique arrow «. Then a representation of Q) is
nothing but an n-dimensional vector space equipped with a linear endomorphism, equivalently, an
n-by-n matriz.

Definition 6.7. A homomorphism f: M — N of (k-linear) quiver representations M = (M;, My )i o
and N = (N;, No)ia s a collection of linear maps f; : M; — N; that intertwines arrows’ actions, i.e.
we have a commutative diagram

M, N,

w| |

M. > .

i

~

<
b

for all arrows a: i — j in Q.

A homomorphism f = (fi)icg, : M — N of quiver representations is injective, resp. surjective, resp.
an isomorphism, if every f; is injective, resp. surjective, resp. an isomorphism, for all i € Q.

Example 6.8. Let Q be the Jordan quiver. Recall that a representation of Q is equivalent to a
choice of n-by-n matric M,. By definition, the isomorphism class of such a representation is given
by the conjugacy classes of M. If we assume k is algebraically closed, then a representative of the
isomorphism class of My is given by the Jordan normal form of M,. That is, M, can be block-
diagonalise into Jordan blocks Jpm, (A1), ..., Jm, (A1), where Jp(X) is the m-by-m Jordan block with
eigenvalue X\ € k.

10



Proposition 6.9. There is an isomorphism between the category of representations of Q and mod k@),
where (M;, My,)i o corresponds to M = Hier M; with kQ-action given by (linear combinations of com-
positions of ) My ’s, and isomorphism classes of Q-representations correspond to isomorphism classes

of kQ-modules.

11



7 Idempotents

Recall that an idempotent of an algebra A is an element z with z? = .

The right A-modules of the form eA and D(Ae) for an idempotent e € A are of central importance in
representation theory and in homological algebra.

Lemma 7.1. The the following hold for any idempotent e € A.
(1) (Yoneda’s lemma) Hom(eA, M) = Me as a k-vector space for all M € mod A.

(2) There is an isomorphism of rings Enda(eA) = eAe.

Proof For (1), check that Homy(eA, M) > f — f(e) = f(1)e € Me defines a k-linear map with
inverse me — (ea — mea). (2) follows from (1) by putting M = eA with straightforward check of
correspondence of multiplication on both sides. O

Remark 7.2. Under the isomorphism A = End4(A), an idempotent e of A corresponds to the ‘project
to direct summand P = eA endomorphism’, i.e. A —- P < A. This is compatible with Yoneda lemma
(think about this!) which says that there is a vector space isomorphism fAe = Hom4(eA, fA) for any
idempotents e, f.

Lemma 7.3. For idempotents e, f € A, we have eA = fA as right A-module if and only if f = ueu™?

for some unit u € A*.

Given an idempotent e = ¢? € A in an algebra A, then eA and (1 — e)A are both right ideal of A.
Since e(1 —e) = 0 = (1 — e)e, we have eAN (1 — e)A = 0, which means that A = eA® (1 —e)A
as right A-module. In particular, in the setting of the above lemma, we have that eA = fA and
(1-e)A=(1—- f)A by Krull-Schmidt property.

Definition 7.4. Two idempotents e, f are orthogonal if ef = 0 = fe. An idempotent e is primitive
if e £ f+ f' for some orthogonal (pair of ) idempotents f, f'.

It follows from the definition of primitivity that
eA and D(Ae) are indecomposable A-modules for a primitive idempotent e.

Example 7.5. The trivial paths e, for © € Qo is (by design) a primitive idempotent of the path
algebra k@, and 1 = > ez 18 an orthgonal decomposition of primitive idempotents. Hence, we
have a decomposition

kQ = P ekQ = P P and D(kQ) = P D(kQe,) = P L.

T€Qo T€Qo T€Qo T€Qo

€Qo
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8 Composition series, Jordan-Holder Theorem

Definition 8.1. Let A be a k-algebra and M € Amod. A composition series of M is a finite chain

of submodules
O=MyCcM,C---CMy=M

such that M;/M;_1 is simple for all 1 < i < £. The number { here is the length of the composition
series. The module M;/M;_q for each 1 < i < { are called the composition factors of the series.

Theorem 8.2 (Jordan-Ho6lder Theorem). Any two composition series have the same length and
the multi-sets of their composition factors (up to isomorphisms) are the same.

We omit the proof. The strategy is basically by induction on the length of series.

Remark 8.3. Jordan-Holder theorem holds as long as a module, regardless of what kind of algebra,
has a (finite) composition series; this condition is actually equivalent to saying that it is noetherian
and artinian.

Remark 8.4. The Jordan-Holder theorem may not hold if one relaxes the form of composition factors
from simple modules to something else. There are a few active research themes, including one related
to quasi-hereditary algebras, that are stemmed from this.

Lemma 8.5. Let M be a finite-dimensional right A-module. Then M has a composition series.

Proof Induction on dimg M, at each step choose a maximal submodule (i.e. a submodule whose
quotient is simple). O

Example 8.6. Let A = KA,. Then the module U, has a composition series
0CUj; CUj-1,; € CUiy1,5 C Ui

with composition factors Sy = Uy j/Uiy1,; for i < k < j. Note that this composition series is unique
- such kind of modules are called uniserial.

Lemma 8.7. If M € mod A and N C M is a submodule, then there is a composition series (M;)o<i<e
so that N = My, for some 0 < k < /.

Proof N hasa composition series, say, of length k, so we take that as the first k terms of the required
composition series of M. On the other hand, M/N also has a composition series, and since every
submodule of M/N is of the form L/N (for a submodule U of M /N, take L :== {m € M | m+N € U};
it is routine to check that this is an inverse operation as quotienting N on the submodules of M that
contains N), a composition series of M /N is of the form (L;/N)o<i<,. Now take Mjyy; = L;. O

Proposition 8.8. Suppose A is a k-algebra such that As has a composition series. Then there are
only finitely many simple A-modules up to isomorphisms, and they all appear in the form A/l for
some A-submodule I of A.

Note that while this does not require A to be finite-dimensional, it requires A4 to be of finite length
(equivalently, noetherian and artinian).

Proof The final clause of the claim is just restating Lemma[3.8} any simple S is given by A/ Ann 4 (m)
for any non-zero m € S. Now fix such an S and I := Anny(m). Since A has a composition series,
I also have one by Lemma so that the series ends with I C A. Since this is possible for any
simple S, it follows from Jordan-Holder theorem that all simple modules other than S must appear
as composition factors of I.

Since composition series is a finite chain, there must be finitely many composition factors - hence, the
simple modules of A must be finite. O
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9 Semisimplicity and Artin-Wedderburn theorem

In order to obtain all (isomorphism classes of) simple A-modules - or equivalently maximal right A
ideal (i.e. maximal submodules of Ay4) - for a finite-dimensional k-algebra A, we will use the following.

Definition 9.1. Let A be a k-algebra and M € mod A.

(1) The (Jacobson) radical rad(A) (sometimes also written as J(A)) of A is the intersection of all
mazximal right ideals (i.e. mazimal A-submodules) of A.

(2) A is semisimple if rad(A) = 0.

Example 9.2. For A = kQ of a finite quiver Q and x € Q. The projective P, at x contains a
submodule spanned by all paths starting from x with length at least 1. This is a mazximal submodule
of P, since the cokernel of the natural embedding to P, is a one-dimensional module spanned by the
coset of e — in particular, this simple module is isomorphic to Sy. Thus, we have rad(A) = kQ>; the
submodule of A spanned by all paths of length at least 1.

Proposition 9.3. Suppose A4 has a composition series. Then the following holds for the Jacobson
radical rad(A).

e rad(A) is the intersection of finitely many mazximal right ideals.

o rad(A) is the intersection of all two-sided ideals Ann(S) := {a € A | ma = 0Vm € S}, in other
words
rad(A) = {a € A| Sa =0 for all simple S}.

e rad(A) is a two-sided ideal of A.

e rad(A)" =0 for £ at most the length of Ay.

o (A/rad(A))a/rad(a) s a semisimple (as a module).

o Ay is a semisimple (as a module) if, and only if, rad(A) =0 (i.e. A semisimple as an algebra,).
Proof omitted. We note that all of these claims do make use of the Jordan-Hélder theorem.

Example 9.4. (1) Direct product of two semisimple algebras is semisimple.

(2) A = Mat, (D) with D a division k-algebra is a semisimple k-algebra. We have decomposition
Aq VO into n copies of n-dimensional simple module

V = {(vi)1<i<n | vi € D Vi}.

(3) A :=Kk[z]/(z™) is not semisimple for any n > 2 as it has a non-trivial (unique) maximal ideal

rad(A4) = (z).

Theorem 9.5 (Artin-Wedderburn theorem). Let A be a finite-dimensional k-algebra and let r be
the number of isoclasses of simple A-modules, say, with representatives Si,...,Sy. Let D; := End 4(S;)
be the division k-algebra given by endomorphism of the simple module S;. Then there is an isomorphism
of k-algebras

A/rad(A) = Maty,, (D1) x --- x Maty,, (D,).

As before, if we work over algebraically closed field k = k, then all the D;’s are just k.
Proof Let B := A/rad(A). By definition of rad(A4), the A-module A/rad(A) is semisimple, and

any A-submodule M of A/rad(A) satisfies M rad(A) = 0. Hence, M = M /M rad(A) is naturally a
B-module and Endg (M) = End4 (M) (even as algebras!).

14



By Lemma we have B = Endp(B). Since B is semisimple, the Bp is a semisimple B-module,
say, B = S?m @ - ® SP™ where S; are the (representatives of the) isomorphism classes of simple
B-modules. Hence, it follows from Schur’s lemma and its consequence (Lemma and Lemma |3.13])
that

B 2 Endp(B) = Mat,, (D) x --- x Mat, (D),

where D; := Endpg(S;) for all 1 < i <r. This completes the proof. O

Corollary 9.6. For any finite-dimensional k-algebra A, let Sim(A) be the set of isomorphism-class
representatives of simple A-modules. Then there is a one-to-one correspondence

Sim(A) <1~ Sim(A/ rad(A))
St S = S5/Srad(A)
(= S as underlying vector space)
resT’ 1T

where resT is the restriction of T along A — A/rad(A).

Example 9.7. Suppose that Q is finite acyclic, i.e. kQ is finite-dimensional. Since rad(kQ) is spanned
by all non-trivial paths, kQ/rad(kQ) is just the semisimple kQ-module EBier Si. In particular, the
Artin-Wedderburn decomposition reads

kQ=2kx---xk

with one copy of k for each i € Qg on the right-hand side. Moreover, every simple kQ-module is
isomorphic to one of S; for i € Qq.

Exercise 9.8. Show that when Q is the Jordan quiver, then k@ has infinitely many simple modules
and that rad(k@) = 0.

15



10 Radical and socle

Definition 10.1. The radical of an A-module M israd(M) := Mrad(A). In general, take rad®(M) :=
M and denote by rad**t1 (M) := rad(rad*(M)) = rad* (M) rad(A) for all k > 0.

Successively taking the radical yields a series:
0 Crad’(M) C--- Crad(M) C M

This is called the radical series. The quotient M /rad(M) is called the top of M, and is denoted by
top(M).

Proposition 10.2. The following hold for M € mod A.
(1) rad(M) is the intersection of all mazimal submodules of M.
(2) top(M) := M/rad(M) is the mazimal semisimple quotient of M.
(3) rad(M & N) =rad(M) @& rad(N).
(4) If f : M — N is a surjective A-module homomorphism, then f(rad M) =rad N.
()

5) (Nakayama’s Lemma, special case) For a submodule N C M, (N +rad(M) = M) = N = M.

Proof omitted; this follows the same kind of arguments as in the case for rad(A).

Example 10.3. Let A be a finite-dimensional algebra. Suppose that e is a primitive idempotent, i.e.
P :=eA is an indecomposable A-module. Since A =P @© Q (by taking Q := (1 —e)A), we have

rad(P) @ rad(Q) = rad(P @& Q) = rad(A).

Since P and Q has no common (non-trivial) submodule, we get that

PeQ Q
rad(P @ Q) rad(Q)’

Thus, it follows from C’orollary that P/ rad(P) is a simple module and that every simple A-module
arises this way. In other words, let PIM(A) be the set of isoclass (=isomorphism class) representatives
of indecomposable direct summands of A, then we have a correspondence

A/rad(A) = = P/rad(P) @

PIM(A) <21~ Sim(A) (10.1)
P +—— P/rad(P)

For a simple A-module S, denote by Pg the corresponding direct summand P of A under the corre-
spondence (|10.1)).

There is a construction dual to rad(M).

Definition 10.4. The socle of an A-module M is soc(M), which is defined as the mazimal semisimple
submodule of M. More generally, take soc®(M) = 0 and for k > 0, let soc*+1(M) to be the submodule
of M generated by the lift of soc(M/sock(M)) C M/sock(M). This yields a series

0 C soc(M) C soc?(M) C --- Csoc (M) =M
called the socle series of M.

Example 10.5. Consider a path algebra kQ of a finite acyclic (for simplicity) quiver Q, and x € Q.
The indecomposable injective I,, = D(kQe,) has a simple socle isomorphic to S,. Essentially this can
be seen by a dual argument in showing top(FPy) = S,. More generally, analogous to Example(10.5 _ for
a finite-dimensional algebra A, every simple A-module appears as soc(I) for an indecomposable direct
summand of D(A).
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Lemma 10.6. For M € mod A, the socle series and radical series has the same length, and this length
is called the Loewy length of M, and is denoted by LL(M).

Proof Let rys (resp. spr) denotes the length of the radical (resp. socle) series of M. First, we show
that sp; < rpr by induction on sys. This is clearly fine if s3; = 0.

Suppose that sp; > 0. By definition we have radT_l(M ) a semisimple submodule of M, and so
rad” "' (M) C soc(M). This means that there is a surjective homomorphism M/rad" ' (M) —»
M/ soc(M), and so "M/ rad™=1 (M) = TM/soc M (EXERCISE!). In particular, we have

"M = Tpp/vadm—1 (M) +12 "M/ soc M + 1.

Since $pr/socmr = Sm — 1, it follows from the induction hypothesis that syr/socr < 7ar/s0c 1, and
hence

SM:SM/SOCM+1STM/SOCM—i_lSTM?

as required.

One can show that rp;s < sp; dually. O

Note that the semisimple subquotients in (between the layers of) the socle series and the radical series
of a module may not coincide.

Example 10.7. Let Q be the quiver 1 < 2 ﬁ) 3 X 4 and consider the projective Po which has the
form

k<~k—=>k—k
Then we have radical series

51653 S2
0CSyi=kBy C rad(P) =ka+kB8+kpyC P,

and socle series <
0C S ®5s=ka+kBy C rad(P,) C P
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11 Example: Topological data analysis

Topological data analysis concerns the “rough shape of data”. Here, we regard data as just a finite
discrete set X in R? (with usual Euclidean metric if you like). X itself is not particular interesting
space (in terms of geometry or topology) for further analysis; yet, we can often see “pattern” — whether
they look more or less randomly distributed, whether they are distributed in the space in a way that
avoid certain areas, etc.

A more well-known mathematical approach to addressing this issue is statistics, where we try to see
if the pattern tells us correlation between different parameters. For topological data analysis (TDA)
we want to just tell if the data form some ‘shapes with holes’ (this is where ‘topology’ comes in). The
idea is to replace each data point x € X by a ball B,(z) of very small radius ¢, slowly increase the
radius and observe how the topology (e.g. by looking at topological invariant such as the ‘genus’) of
the space Xy := (J,c x Bt(z) changes.

Note that if s < ¢, then we have a subspace Xy C X;. Moreover, in practice, it makes sense to sample
t to a finite sequence t; < tp < --- < t,, and take X; := X;,. Since we only concern topology of X,
we can replace X; by a simplicial complex A; where 0-cells (points) are x, and {z1,...,x,} form an
r-cells if By(x1)N---NBy(z,) # (. Having a simplicial complex means that we can take (e.g. the p-th)
homology group H,(X;) = Hp(A¢). The fact that we have Xy, C X;,,, means that we have a chain

H,(X1) = Hp(X2) = - = Hp(X,,).

If we linearise these abelian groups to k-vector spaces, then we get a chain of vector spaces and linear
transformations — this is nothing but a representation of the A,,-quiver

1—-2—..-=n.

In TDA, such a chain is called persistence module (of 1 parameter / finite linear poset). Understanding
the indecomposable decomposition of a persistence module is an important aspect in TDA, this can
even be used to characterise the nature of the data set (e.g. one may record some data from various
metals, and the topological information can be used to distinguish each metal just from the data set).

An interval module M, for 1 <a <b <mn is the &n—quiver representation given by

0= 20k Sk . br 050

where the non-zero space starts at a and ends at b. This is clearly an indecomposable representation.
In fact, forms all indecomposable representation — known by Gabriel in the 70s (this is one special
case of the Gabriel’s theorem). The following is then just a consequence of Krull-Schmidt theorem,
but turns out to be fundamental in TDA.

Proposition 11.1. Every persistence module can be decomposed uniquely to a direct sum of interval
module.

The above is what people call ‘single parameter’, or (finite) ‘linear poset’, case. There are other
possible forms:

(1) Multi- parameter case: the quiver A, is replaced by the ‘commutative cube’, i.e. the bound
quiver A X e X Ap , with relation af8 — Ba for arrows «, 8 going in dlﬁerent directions. In
other Words, a pers1stence module in this case is the same as an A-module, where A = @);_, KA.

(2) Poset case: the quiver A, is replace by the bound quiver (Q, I) whose underlying quiver @ is
the Hasse quiver of the poset P, and I includes all commutation



whenever x > y > z and = > w > z. In other words, a persistence module in this case isthe
same as a module over the incidence algebra of the poset P.

In these general cases, one can still define interval modules, but it is no longer true that every A-module
can be decomposed into interval modules. Much of the recent algebraic and homological aspect of
TDA concerns how to overcome such a problem.

For other aspects and more in-depth study of applying quiver representation to TDA, see, for exmam-
ple, book of Steve Oudot.
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12 Example: Linear matrix pencil

A linear matrix pencil is a matrix A + AB with A, B € M,,x,(k) and X\ being an indeterminant, i.e.
A+ AB € Mpxn(klk]). For simplicity, we just say ‘matrix pencil’ and drop the adjective ‘linear’.
Matrix pencil is used in the study of the so-called generalised eigenvalue problem, and has applications
to various applied mathematics like control theory, differential algebraic equations, numerical linear
algebra, etc.

Two matrix pencils A + AB and A’ + AB’ are strictly equivalent if there are invertible matrices
P e My, (k),Q € M,(k) such that A"+ AB’ = P(A + AB)Q. This is equivalent to A’ = PAQ and
B’ = PBQ.

For simplicity, let us specialise k to an algebraically closed field; this means that we can use Jordan
canonical form Jp,(a) € My, (k).

Let H,, be the m x (m + 1)-matrix given by removing the last row of J,,(0), and (I,,]0) be the
m X (m + 1)-matrix given by adding a column of zero to the identity matrix I,,. Define

A1 0 - 0
. 0 )\ 1
Lini= MIl) + Hon = | 7 7 7 | € Munenay (V)
T T |
0O --- 0 A1

Similar to the Smith/Jordan canonical form, each matrix pencil of is equivalent to one in Kronecker
canonical form.

Theorem 12.1. Every matriz pencil is strictly equivalent to a block-diagonal matriz, where each block
s of one of the following form:

(1) Ly, or LY for some m > 1.

(2) Ly + AJm(0) or Jp(a) + Ay, for some m > 1 and o € k.
One way to prove this theorem is to observe the following.

Proposition 12.2. For any m,n € Z>q, there is a one-to-one correspondence between the strictly
equivalent classes of m X n-matrixz pencil and the isomorphism classes of representations over the
Kronecker quiver Ko := (1=——%2) with dimension vector (n,m).

Proof Exercise. O

Under this correspondence, the Kronecker canonical form (the blocks appearing in the block-diagonal
form) corresponds to indecomposable representations of the Kronecker quiver. In quiver representation
theory, such classification can be done using a Kac’s theorem.

Corollary 12.3. FEvery indecomposable k Ko-modules is isomorphic to one of the following.
(1) Preinjective modules, which correspond to L, for m > 1.
(2) Preprojective modules, which correspond to LY for m > 1.
(3) Regular modules Ry, (x) for x € PL and m > 1, where

Ry, (a) corresponds to Jpy(a) + Al if o =[x : 1];
R, (00) corresponds to I, + AJpm(0)  if a =[1:0] = co.
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With this, various problems about linear matrix pencil can be transformed to problems about repre-
sentations of the Kronecker quiver. There are also ‘higher variation’ of matrix pencils that correspond
to the n-Kronecker quiver where there are n > 2 arrows between the 2 vertices (instead of just n = 2).
Examples problem includes the “matrix subpencil” problem, which are studied by Claus Ringel, Han
Yang, Stefan Juteu-Szollosi.

Exercise 12.4. Write down the indecomposable kK2-modules as representations.
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13 Bounded path algebra

For general quiver, we loses finite-dimensionality, and so many nice things we explained do not hold
any more. To retain finite-dimensionality, we need to consider nice quotients of path algebras.

Definition 13.1. An ideal I < kQ is admissible if (kQ1)* C I C (kQ1)? for some k > 2, i.e. I
is generated by linear combinations of paths of finite length at least 2. The pair (Q,I) is sometimes
called bounded quiver. A bounded path algebra or quiver algebra (with relations) is an algebra of the
form kQ/I for some quiver Q and admissible ideal I.

Remark 13.2. Admissiblity ensures there is no redundant arrows (which appears if there is a relation
like, for example, a — By € I for some « # 3,7 € 1) and there is enough vertices (trivial paths may
not be primitive if there is a loop x at a vertex with relation 22 — € I).

Lemma 13.3. A bounded path algebra is finite-dimensional.

Proof There exists a surjective algebra homomorphism kQ/(kQ1)* — kQ/I; the former is finite-
dimensional. O

Example 13.4. Let Q be the Jordan quiver with unique arrow «. Let I be the ideal of kQQ generated
by o for some k > 2. Then I is an admissible ideal and kQ/I = k[z]/(2*) is a truncated polynomial
ring.

Definition 13.5. A representation M of a bounded quiver (Q,I) is a representation M = (M;, My )i o
of Q such that M, = 0 for all a € I; here M, := Zp Ap M, for a = Zp App written as a linear
combinations of paths p.

A homomorphism f: M — N of representations of (Q,I) is a collection of linear maps f; : M; — N;
that intertwines arrows’ action.

As before, representations are really just synonyms of modules.

Lemma 13.6. A representation of a bounded quiver (Q,I) is equivalent to a kQ/I-module, and
homomorphisms between representations are equivalent to those between kQ/I-modules.

We have seen that it is easy to write down the indecomposable decomposition of the free k@Q-module
kQrg, we would like such nice thing to carry over to bounded path algebras.

Theorem 13.7. (Idempotent lifting) If I is a nilpotent ideal of A (i.e. I"™ =0 for some n > 1) and
e==¢2¢c A/I, then there is a lift e = ¢®> € A of €, i.e. e=e+ I.

Proof omitted.
Corollary 13.8. Let I be an nilpotent ideal in A. Suppose that
lyr=hHh++fn
for fi € A/I are primitive orthogonal idempotents. Then we have
la=e+- €,
where each e; € A is a primitive orthogonal idempotent that lifts f;.

Corollary 13.9. Let A be a bound path algebra. The primitive orthogonal idempotents of A are given
by the trivial paths.

Proof Apply Corollary with I = rad A. Since A/I = k@ is semisimple and so we have
primitive orthogonal idempotents given by the trivial paths. O
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Notation. As in the case of path algebra, denote by S, or S(z) the simple kQ/I-module given by
placing a one-dimensional vector space at vertex x € Qu and zero everywhere else.

Similarly, denote by P, or P(x) the indecomposable kQ/I-module e,kQ/I. Likewise, by I, or I(x)
the indecomposable D((kQ/I)e,).

Proposition 13.10. For a finite-dimensional quiver algebra A = kQ/I, there is a decomposition of
A-modules
Ay= P P, and (DA)s= P L.

xz€Qo z€Qo

Moreover, {S; = top(Py) = soc(I;) | x € Qo} form the complete set of isoclasses representatives of
simple A-modules.

Proof By Corollary the trivial path e, is a primitive idempotent of A, and so P, = e, A and
I, = D(Ae;) are indecomposable.

The simple A-modules (up to isomorphisms) correspond to those over the semisimple quotient algebra
A/ rad(A) by Corollary[9.6] Hence, there are precisely |Qo| simple modules (up to isomorphism), given
by the simple top of P,, which is also isomorphic to the simple socle of I,. O

We give a brief justification of why quiver representations provide a good way to construct lots of
algebras.

Theorem 13.11. Suppose k is algebraically closed. Then every finite-dimensional k-algebra A is
Morita equivalent to a bounded path algebra kQ/I. More precisely, kQ/I is given by Enda (D, eA)
where e varies over the set of representative of equivalence classes of primitive idempotents of A.

We defer the precise meaning of Morita equivalent; it roughly translates to saying that understand-
ing A-modules and homomorphisms between them is equivalently (but not necessarily ‘equal to’) to
understanding modules and homomorphisms between a Morita equivalent bounded path algebra.

Example 13.12. Let A = Mat, (k) be a matriz ring. Then the elementary matriz e := Eyi; is a
primitive idempotent and eA = E; ;A for all 1 < j < n. So A is Morita equivalent to k = k@ =
End(eA) where Q is a one-vertez-no-arrow quiver.

Primitive idempotent decomposition, say, 1 = >, e;, allows us to write an algebra A in matrix form
(eiAej)i<i j<n, where the ‘row spaces’ form the indecomposable direct summands e; A and the dual of
the ‘column space’ form the indecomposable direct summands D(Ae;). It could be a helpful mental
exercise to think about the meaning of eAe = End(eA) from Yoneda lemma - this maybe a useful
idea to keep in mind when one tries to understand the above theorem.
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14 Some basic category theory

We briefly recall some language from category theory that are commonly used in representation theory.

A category C = (obC,homC, o) consists of the following data.
(1) A collection obC of objects. It is common to write X € C instead of X € obC.

(2) For any pair X,Y € C, there is a collection of morphisms from X to Y. Such an element is often
written f: X — Y if context clear, or f € C(X,Y) or f € Hom¢(X,Y).

(3) A binary operation —o — : C(Y,Z) x C(X,Y) — C(X, Z) that takes (¢: Y = Z,f: X = Y) to
the composition go f : X — Z, and this operations satisfies the following:
e Composition is associative, i.e. h(gf) = (hg)f for all (meaningful) h, g, f.

e There are identity morphisms idx that are left and right units with respect to composition,
ie. fidx = f and idy f = f for all (meaningful) f.

For simplicity, we assume always that C(X,Y") are sets.
Example 14.1. Some common categories of interest in algebras.

(1) The category mod A of finitely generated A-modules.

(2) The category Mod A of all A-modules.
(3) The category Ab of abelian groups and group homomorphisms.
(4)

Let Q be a quiver and R be a ring. Then we have a k-linear path category whose objects are the
vertices of Q, and morphisms are k-linear combinations of paths (directed, and possibly trivial,
walks) of Q. Morphism compositions are induced by path concatenation in the same way as path
algebra. Indeed, what we are doing is essentially just viewing the ring kQ as a category.

(5) The category cohX of coherent sheaves over a scheme X.

Suppose we have categories C and C'. We say that C’ is a subcategory of C if the following are satisfied.
(1) obC’ is a subcollection of obC.

(2) C'(X,Y) CC(X,Y) for all X,Y.

(3) Composition and identity morphisms in C and in C’ coincide.
If, moreover, C'(X,Y) = C(X,Y), then we say that C’ is a full subcategory of C.
Example 14.2. mod A is a full subcategory of Mod A.

Definition 14.3. Let k be a field, a category C is k-linear if C(X,Y) are k-vector spaces for all
X, Y € C and compositions are k-bilinear maps. A functor F' : C — D between Kk-linear categories is
k-linear if Fxy : C(X,Y) = D(F(X),F(Y)) is k-linear.

Example 14.4. When A is a k-algebra. Then the module category (finitely generated or not) is
k-linear.

A covariant functor (resp. contravariant functor) F': C — D consists of
e an assignment of object F'(X) € D for each X € C, and

e an assignment of morphism F(f) € D(F(X),F(Y)) (resp. F(f) € D(F(Y),F(X))) for each
f €C(X,Y), such that

[ F(idx) = idF(X)a and
o F(gf) = F(g)F(f) (xesp. F(gf) = F(f)F(9))-
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Note that, a contravariant functor from C to D is the same as a convariant functor from the opposite
category C°P to D. Here, C°P given by the same collection of objects as C, but the morphisms and
their composition are in reverse direction, i.e. C°?(X,Y) :=C(Y, X).

Example 14.5. The identity functor 1¢ : C — C is the functor given by mapping every object and
homomorphism to itself.

In practice (in representation theory and the like), a functor tells us how we can transform from the
theory of modules over one algebra to those over another algebra.

Example 14.6. The (k-linear) duality D = Homg(—,k) : mod A — mod A°P? is a contravariant
functor.

To compare two functors (or compare how a pair of functors is close/far away from the identity
functor), one uses natural transformations. More precisely, a natural transformation n : F = G of
functors F, G : C — D is a collection of morphisms nx : F'(X) — G(X) such that there is the following
commutative diagram

F(X) —"—G(X)

If we say that a map nx : F(X) — G(X) is natural in X, then we mean that {1x} xemod o defines a
natural transformation.

A natural isomorphism is a natural transformation n such that nx is an isomorphism for all X. We
simply write F' 22 G if there is a natural isomorphism between two functors F, G.

Definition 14.7. Let C,D be two categories.

e C and D are equivalent if there exists a pair of functors F : C — D,G : D — D such that
le 2 GF and 1p 2 GF.

e A functor F : C — D is dense if, for all D € D, there is C € C such that F(C) = D; i.e.
“surjective on object up to isomorphism”.

o A functor F' : C — D is faithful (resp. full), if the induced map Fxy : C(X,Y) — D(F(X), F(Y))
given by f — F(f) is injective (resp. surjective).

Proposition 14.8. F': C — D is an equivalence of categories if, and only if, F is fully faithful dense.

Exercise 14.9. Recall that R°P is the opposite ring of R, whose underlying set is the same as that of
R with multiplication (a -°P b) :=b-a. A representation of R is a ring homomorphism

p: R® — Endy (M), e pr,

for some abelian group (M,+). A homomorphism f : pyr — pn of representations pyr : R°P —
Endyz (M), pn : R°? — Endz(N) given by an abelian group homomorphism f : M — N that intertwines
R-action, i.e. pn(r)o f = fopyn(r) for all T € R.

Eplain why a representation of R is equivalent to a right R-module; and why homomorphisms corre-
spond.
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15 Extra: Additive and abelian categories

In brief, additive categories are the categories where it make sense to talk about direct products and
has the same backbone as the abelian groups. Abelian categories are additive categories where it
makes sense (on the categorical level) to talk about kernel and cokernel, and that these behave like
what we expect in many typical situations like representation theory and algebraic geometry.

Definition 15.1. Consider an object O € C in a category C.

e O is an initial object if for all X € C, there is a unique morphism O — X.
e O is a terminal object if for all Y € C, there is a unique morphism Y — O.
e O is a zero object if it is both initial and terminal.

Note that, if it exists, then it is unique up to unique isomorphism. For example, the zero module
0 € mod A in the module category of a ring is a zero object.

Definition 15.2. Let I be a(n indexing) set and (X;)icr a family of objects in C.

(1) An object P equipped with morphisms (p; : P — X;)ier is a product if for all Z € C and all
(fi: Z — Xi)ier, there is a unique morphism f such that p;f = f; for all i € I.

(2) Dually, an object C' equipped with morphisms (v; : X; — C)ier is a coproduct if for all Z € C
and all (f; : Xy — Z)icr, there is a unique morphism f such that fi; = f; for alli € I.

(3) A biproduct B € C is an object that is isomorphic to a product and also to a coproduct.

When a product/coproduct exist, it is unique up to unique isomorphism. It is often written as [ [;c; Xi
for product, [],.; X; for coproduct, and @,.; X; for biproduct.

Product and coproduct are special instances of what-are-called limit and colimit respectively. As a
consequence of abstract nonsense (category theory), there are natural bijections

cx. [[v)=]]ex.v), cJ[x:,v)=]]cX.y).
icl icl icl el
Note that coproduct get ‘extract’ out to a product here. If the indexing set I is finite, then all the []
and [ in the above formula can be replaced by €.
Definition 15.3. A category C is additive if the following are satisfied.
e [t is pre-additive, i.e. C(X,Y) are abelian groups for all X,Y € C with bilinear composition.

o Finite products [[;_ | X; (in the categorical sense) exists for all Xi,..., X, € C.

o There is a zero object 0 € C (in the categorical sense).

A functor F : C — D between additive categories is additive if F(0) = 0 and F preserves (finite)
products.

In an additive category, we have (see the additive category page on nLab, or Kashiwara-Schapiro’s
book Corollary 8.2.4)

finite product = finite direct sum = finite coproduct.

Note that the terminology ‘direct sum’ matches the one used in module theory. Note also that being
additive is a property not a structure, since products and zero objects are uniquely determined by
universal property, there is no choice involved; c.f. Kashiwara-Schapiro’s book Theorem 8.2.14.

In a pre-additive category C, since Hom-sets are abelian groups, there is always a distinguished zero
morphism 0 € C(X,Y) for any X,Y € C. This zero morphism allows us to formulate kernels and
cokernels in the categorical level.
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Definition 15.4. Let C be a pre-additive category and f: X — Y a morphism in C.

(1) A kernel of f is a morphism i : K — X such that (K EiN Y) =0 and for any i’ : K' = X with
fi' =0, there exists a unique morphism j : K' — K such that i’ = 1ij.

PSR . Y
ol g f
\
Vi ¥

In the case when the kernel of f exists, then denote by Ker(f) the object K, and by ker(f) the
morphism i, as appeared above.

(2) Dually, a cokernel of f is a morphism p : Y — C such that (X 2l C) = 0 and for any
p' Y — C" with p'f =0, there exists a unique morphism q : C — C’ such that p’' = qp.

Y vp'
\\
f

o--Tsc

In the case when the cokernel of f exists, then denote by Cok(f) the object C, and by cok(f) the
morphism p, as appeared above.

(3) Ifker(f) exists, then a coimage of f is a cokernel of ker(f). When this exists, the cokernel object
is denoted by Coim(f).

(4) Dually, if cok(f) exists, then an image of f is a kernel of cok(f). When this exists, the kernel
object is denoted by Im(f).

Lemma 15.5. Let f: X — Y be a morphism in a pre-additive category C.

(1) ker(f) is @ monomorphism, i.e. a left-cancellative morphism (meaning that, for any morphisms
91,92, ker(f) o g1 = ker(f) o g2 = g1 = g2).

(2) cok(f) is an epimorphism, i.e. a right-cancellative morphism (meaning that, for any morphism
91,92, g1 © cok(f) = g2 o cok(f) = g1 = g2).

(3) If kernel, cokernel, coimage, image all exist for f, then f can be factored uniquely as X —
Coim(f) = Im(f) = Y.

Proof (1), (2): Follows from the universal property (definition).

(3) We have (Ker(f) LiCONS ' N Y) = 0. Hence, being a cokernel of ker(f), we have a unique
morphism Coim(f) — Y for which f factors through.

Since coimage is a cokernel, X — Coim(f) is an epimorphism, which means that any morphism g
with (X — Coim(f) % Z) = 0 implies g = 0. Now we have

0=(x Ly U cok()

— (X = Coim(f) = ¥ <= cok(f)).

Hence, the morphism (Coim(f) — Y — Cok(f)) = 0. On the other hand, Im(f) is the kernel of
Y — Cok(f), and so (Coim(f) — Y — Cok(f)) = 0 implies that Coim(f) — Y factors uniquely
through Im(f) — Y. This finishes the construction of the desired morphism. O
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Exercise 15.6. (1) Show that in mod A, injective (resp. surjective) module homomorphisms coin-
cide with monomorphisms (resp. epimorphisms).

(2) Show that in the category of rings (morphisms being ring homomorphisms), the natural embedding
Z — Q is an epimorphism.

Definition 15.7. A category C is abelian if
e C is additive, and

e any morphism f : X — Y admits a kernel ker(f) : Ker(f) — X and a cokernel cok(f) : Y —
Cok(f), such that the induced morphism Coim(f) := Cok(ker(f)) — Ker(cok(f)) =: Im(f) of

Lemma[15.5 (3) is an isomorphism.

Exercise 15.8. mod A and proj A = {modules isomorphic to a finite direct sum of direct summands of A}
are k-linear additive categories, but only the former is abelian.

Exercise 15.9. Consider the category modA whose objects are the same as those in mod A (i.e.
finitely generated A-modules), but with morphism space given by

Hommoda (X, Y) := Homy(X,Y)/I(X,Y),
where I(X,Y) consists of all morphisms that factors through some P € proj A. Show that
(1) Any P € proj A is isomorphic to 0 in modA.
(2) modA is additive but not abelian.
Definition 15.10. Let f: X — Y be a morphism in an abelian category A.
o f is said to be injective if Ker(f) = 0. In which case, we say that X is a subobject of Y.

e f is said to be surjective if Cok(f) = 0. In which case, we say that 'Y is a quotient (object) of
X.

Lemma 15.11. Let f : X — Y be a morphism in an abelian category A.
(1) f is injective < f is a monomorphism.
(2) f is surjetive < f is an epimorphism.

(3) f is injective and surjective < [ is an isomorphism.

Proof

Ker(f)=0<Vi: Z — X, (fi =0 =i factors through 0)
eVi:Z—->X,(fi=0=i=0)

< f mono.
This proves (1); (2) can be proved similarly.

(3) f isom implies both mono and epi, and so by (1) and (2) we get injective and surjective. Conversely,
when f is both injective and surjective, then we have X = Coim(f) = Im(f) =Y. O
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16 Bimodule, tensor and Hom

The most typical method in constructing functors between module categories is through ‘tensoring’
and ‘hom-ing’, which we explain in details now. For simplicity, we always work over a field k.

16.1 Bimodule

Definition 16.1. Let A, B be two k-algebras. An A-B-bimodule is a k-vector space M that has the
structure of a left A-module and also the structure of a right B-module, such that (am)b = a(mb) for
all a € A,b € Bom € M. In such a case, we may write M € Amod B or AMp to specify M is an
A-B-bimodule.

For simplicity, we assume all bimodules are k-central, i.e. Am = mA\ for all A € k. We will omit the
adjective k-central from now on.

Example 16.2. For any algebra A, both A and D(A) are naturally an A-A-bimodule. Note that the
right/left module structure on D(A) is induced by the left/right module structure on A. (The direction
of action has swapped!)

Example 16.3. Homu(X,Y) is naturally a End4(Y)-End 4 (X)-bimodule with action given by com-
position of homomorphisms.

16.2 Tensor product

Definition 16.4. Let VW be finite-dimensional k-vector space with bases, say, B,C respectively.
Then the tensor product V @y W (or simplifies to V@ W if context is clear) is the finite-dimensional
k-vector space with bases given by

{veow|veB,weC}.

In particular, note that dimg V ® W = (dimy V') x (dimy W).

Proposition 16.5. Let A, B be k-algebras. Then A Q@ B is also a k-algebra with multiplication
giwen by extending (a ® b)(a’ @ V') — ad’ @ bV linearly. For M € mod A and N € mod B, we have
M ®x N € mod A B.

Proof Routine checking. O

Lemma 16.6. An idempotent e € A ®k B is primitive if and only if e = e; ® e, for some primitive
idempotents e, € A and e, € B. In particular, we have Sim(A @ B) = {S®T | S € Sim(A),T €

Sim(B)}.
Note that not all A ®, B-module is of the form M ® N.

Example 16.7. Let A = k[z]/(2?) and A’ := k[y]/(y?). Then B = A®y A" = k[z,y]/(z%,4?).
Then we have an indecomposable 2-dimensional B-module V = ku + kv (top S = B/rad(B) and
socle S) where both x,y acts by u — v. This cannot be of the form M ® N for some M € mod A
and N € mod A’. Indeed, as both xz,y acts non-trivially, if V.= M ® N then both M, N must have
dimension at least 2, and so the tensor product has dimension at least 4; but dimy V = 2.

Proposition 16.8. An A ®y B°P-module is the same as a (k-central) B-A-bimodule. Moreover,
homomorphisms of A ® B°P-modules correspond to (k-linear) homomorphisms of B-A-bimodule.
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Definition 16.9. Let X € mod A be a right A-module and Y € mod A°P be a left A-module. Then
define X @ 4Y to be the vector space X @k Y/U where U is the subspace consisting of ta®@y —x ® ay
forallz € X,y €Y ,a€ A.

In the above, if 4Yg is, in addition, an A-B-bimodule, then X ® 4 Y has a natural right B-module
structure: (x ® y)b:= z ® (yb). In fact, as any left A-module is also a A-k-bimodule, we can X ®4 Y
being a k-vector space as a special case of this observation.

Suppose we have a homomorphism f : M — N of right A-modules. Then for an A-B-bimodule 4Yp
we get a homomorphism of

@AY
M®AYBf*A>N®AYB
meyr——=f(m)®y

Note that (gf)®4Y = (9®4Y)(f®4Y), thatis, —®4Y : Mod A — Mod B is a (covariant) functor. It
is also k-linear additive in the sense that (Af+pg)®aY = A(f®4Y)+u(g®4Y") for all homomorphisms
f,g and scalar A\, u € k. Note that this naturally restricts to a functor — ®4 Y : mod A — mod B on
the finitely generated modules so long as Y is so.

Likewise, if X is a bimodule, then g X ® 4 Y has a left module structure; mutatis mutantis.

16.3 Hom

Suppose now that we have p X 4 a B-A-bimodule and M a right A-module. Then the space Hom4(X,Y)
has a natural right B-module structure:

(f: X=Y) b:=(x— f(bx))

Indeed, we have
((f b)) (@) = (f - b)(V'z) = f(bb') = (f - (bV)) (=),

and other axioms are even easier to verify.
Similarly, in the same setting, Hom (Y, 5 X 4) also has a left B-module structure:
(b ))(@) =V (@) =V (bf(x)) = (V') f(z) = (D) - f)(2).

Exercise 16.10. Show that Homa(pXa, —) defines a k-linear additive covariant functor from Mod A
to Mod B (and also mod A — mod B when X is finitely generated). Likewise, show that Homy(—, pX 4)
defines a k-linear additive contravariant functor on both the (big) module category and the finitely-
generated-module category.

Lemma 16.11. For any A-module M, we have (natural) A-module isomorphisms
M®4 A= M, and Homg(A, M) =M

given by m®1+— m and f— f(1). Moreover, — @4 A and Homy (A, —) are both naturally isomorphic
to the identity functor.

Proof First one follows from the construction that ma ® 1 = m ® a. The second one is just special
case of Yoneda lemma. O

30



16.4 Tensor-Hom adjunction

Suppose 4Mp is a (f.g.) A-B-bimodule, then we have two functors:

—®aM

mod A mod B.

Homp(Mp,—)

These are not inverse to each other; but they form a so-called adjoint pair, which is equivalent to
saying that there is the following natural isomorphisms.

Theorem 16.12 (Tensor-Hom adjunction). Let X € mod A, Y € mod B, 4Mp € Amod B. Then
there is a canonical isomorphism of k-vector spaces

1R

HX,M,Y : HOmB(X XA M,Y) HOmA(X,HOmB(M,Y))

I (x = (m— f(x@m)))
(z@m = (g(z))(m)) g
that is natural in each of X, M,Y .
Proof Check that the maps written are (k-linear and) mutual inverse of each other. O

In computer science, the map 0x sy is also called “currying”.

As innocence as it looks, this isomorphism is fundamental in (homological algebra and) representation
theory.

Example 16.13 (Adjoint triple (RHS)). eA is naturally an eAe-A-bimodule. Hence, we have an
adjoint pair (— ®eqe €A, Hom g (eA, —)).

On the other hand, Ae is naturally an A-eAe-bimodule, and so we have another adjoint pair (— & 4
Ae,Home4¢(Ae, —)). Note that we have Homy(eA, —) = — @4 Ae by Yoneda lemma.

Example 16.14 (Adjoint triple (LHS)). A/I is naturally an A-A/I-bimodule for any two-sided
ideal I of A, and so we have an adjoint pair (— @4 A/I,Homy,(A/I,~)).

A/I is also an A/I-A-bimodule, and so there is another adjoint pair (— ®4,; A/I,Hom4(A/I,—)).
Note that both Hom 41 (A/I,—) and ® 4,1 A/I sends an A/I-module to itself (up to isomorphism) and
acts identically on morphisms, i.e. Homy,(A/I,—) =1d = — @4, A/I.

Exercise 16.15. Let ' = —®4 M and G = Homp(M, —) for an A-B-bimodule sMp. Show (without
appeal to category theory) that we have natural transformations € : FG — Id and n : Id — GF. Show
also that the following holds:

idp = (eF) o (F') and idg = (Ge) o (nG).

Here, eF' (and similarly for nG) denotes the natural transformation eF : FGF — F given by (eF)x =
erx, whereas F'n (and similarly for Ge) denotes the natural transformation F' — FGF given by
(Fn)x = F(nx).
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17 Exactness

Definition 17.1. Consider a sequenccﬂ My = (M;,d;)icz of modules and homomorphisms of modules

di—2 di—1 d; d;
My =2 My —— M; =5 My —%

We say that the sequence M, is

° q (cochainﬂ complex if diy1d; = 0 for all i € Z. In such a case, we have Im(d;) C Ker(d;41)
for all i € Z and the i-th cohomology of M, is

H'(M,) := Ker(d;)/Im(d;_1).

e exact at My, for some k € 7 if Im(di_1) = Ker(dy). Note that this implies dy, o d_1 = 0.
e exact if it is so at every term.

e short exact (often abbreviated as s.e.s. or ses) if it is a 5-term exact sequence that starts and
ends at the trivial module, i.e., of the form

0sLLME NS0 (17.1)

such that f is injective, g is surjective, and Ker(g) = Im(f). In this case, M is also called an
extension of N by L.

Definition 17.2. A (covariant) functor F : mod A — mod B is
o left exact if it maps short exact sequence (such as (17.1))) to an exact sequence

0 - F(L) 29 poary 29 p).

In other words, it preserves kernel.

e right exact if it maps short exact sequence (such as (17.1)) to an exact sequence

F(g)

)y 29D, poary 29 vy = o,

F(L
In other words, it preserves cokernel.

e exact if it is both left exact and right exact, i.e. maps ses to ses.

We define left/right exactness for contravariant functor analogously. In particular, left exact con-
travariant fucntor turns cokernel into kernel.

Lemma 17.3. Let g X 4 be an A-B-bimodule. Then the following hold.
(1) Homa (X, —) maps an exact sequence 0 — L Iy M % N to an ezact sequence
0 — Homa (X, L) 2°7 Hom (X, M) 2= Homu(X, N).
In particular, Hom (X, —) is left exact.
(2) Homa(—,X) maps an exact sequence L Ly M % N =0 to an evact sequence
0 — Homu(N, X) =% Homu (M, X) =25 Homyu(L, X).

In particular, the contravariant functor Homa(—, X) is left exact.

!Superscript /subscript indexing formalism only matters to topologist; I will be liberal in these notations.
2Since we do not deal with any true topological theory, cochain just means the indices increase as we go along the
sequence. We always use cochain convention except perhaps when dealing with projective resolution later.
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Proof We show (1) and leave (2) for the reader.

Exactness at Homy (X, L): we need f o — to be injective. Indeed, if f o6 = 0 for some 6 : X — L,
then f(0(x)) for all z € X. This means that 6(z) € Ker(f) =0, and so 6 = 0.

m(fo—)C Ker(go—): Suppose that § : X — M is given by f o ¢ for some ¢ : X — L. Then
go(z) = g(fo(x)) = (9f)¢(x) = 0, which means that 6 € Ker(go —).

Ker(g o —) C Im(f o —): Suppose that g = 0 for some 6 : X — M. Then for every z € X, we have
0(z) € Ker(g) = Im(f), and so we can write 8(z) = f(¢(z)) for some ¢(x) € L. Since f is injective,
¢(x) € L is uniquely determined, and so we have a well-defined function ¢ : X — L. We check that
¢ € Homa (X, L):

o F(@(a+a) = 0 +a') = 0(x) +0(x') = [(6() + F($')) = F(6(z) +¢/(x)). Hence, f being
injective implies that ¢(z 4+ 2') =

(x) + o(a').
e Suppose that A € k. Then f(p(A\x)) = 0(Ax) = N(z) = Af(p(x)) = f(Ap(x)). Hence, f being
injective implies that Ap(z) = p(Ax).

0
¢
z)

Now we have 0 = f¢ as A-module homomorphism, and so 6 € Im(f o —). O

A similar lemma for tensor product exists, and can be proved by direct verification as in the Hom
functor case. Instead, we use another trick involving tensor-Hom adjunction, but first we need one
more tool.

Lemma 17.4 (Yoneda embedding reflects exactness). Consider a sequence L Sy M S N
mod A. If the sequence

Hom(X, L) 225 Homa(X, M) L= Hom(X, N)
s exact for all X € mod A, then L i> M % N s also exact. Similarly, if

Hom (N, X) —% Homu (M, X) —% Hom(N, X)
1s exact for all X € mod A, then so is the original sequence.

Proof We show the first one.

Im(f) C Ker(g): Take X = L, then we have gf = (9o —)(f o —)(idz) = 0.

Ker(g) C Im(f): Consider X = Ker(g) and inclusion ¢ : Ker(g) < M. Then (go —)(¢t) = gt = 0, so
exactness implies that ¢« = f¢ for some ¢ € Hom4(Ker(g), M). Hence, Ker(g) = Im(:) C Im(f). O

Lemma 17.5. — ®4 X maps an exact sequence L i> M 2 N =0 to an ezact sequence
LosX L2% Mo, x 245 Ney X - 0.
In particular, — @4 X is right exact.

Proof We apply Homp(—,Y) to the sequence (after tensoring X). By the naturality of the adjoint
isomorphism, we have a commutative diagram:

Homp(N ®4 X, V) —294% Homu(M ©4 X,Y) —L24%, Homu(L @4 X,Y)
\ \ \
O = O =] O =~
v v v

0 —— Homu4(N,Homp(X,Y)) % Homy (M, Homp(X,Y)) = Homu(L,Homp(X,Y))

The second row is exact since it is given by applying the left exact functor Homy(—, Z) for Z =
Homp(X,Y). Hence, (by careful diagram chasing) the first row is also exact. Since Yoneda embedding
reflects exactness, we get the claimed exactness. ]

33



18 Projective and injective modules

Definition 18.1. An A-module P is projective if for any given surjective homomorphism f : M — M’
and any homomorphism p: P — M, we have p factors through f, i.e. 3q: P — M’ s.t. fq = p there
1s the following commutative diagram

P

7
3q// l\fp
-

M ——= M.

In other words, f o — = Homa(P, f) : Hom (P, M') — Homu (P, M) is surjective, i.e. Hom (P, —) is
exact. Denote by proj A the category of finitely generated projective A-modules.

Dually, an A-module I is injective if for any given injective homomorphism f : M' — M and any
homomorphism i : M — I, i factors through f. This is equivalent to saying that Homyu(f,I) :
Hom (M, I) — Homy(M', I) is surjective, i.e. Homa(—,I) is exact. Denote by inj A the category of
finitely generated injective A-modules.

Example 18.2. Take P = A. Then we know that Homy(A,Y) 2 Y via a+— «a(1) for any Y € mod A.
Hence, for any surjective f : M' — M and any p : A — M, to find q we only need to show that

f(q(1)) = p(1), but
p(1) = f(z) = f(q(1)).

That is, the free A-module A4 is projective. Note that this does not require finite-dimensionality of A.
Consequently, any free A-module (of any rank) is also projective.

Dually, using Hom 4 (X, DA) = Homgop (A, DX) and the same argument, we get that DA is injective.
Note that this DOES require the finite-dimensionality of A since we need to the isomorphism between
the Hom-space under duality.

Lemma 18.3. The following are equivalent for a ses 0 — L i> M2 N —o0.
(1) There is some h: N — N such that gh = idy.
(2) There is some e : M — L such that ef = idys.

(3) There is a commutative diagram

L& N
1,0" (0,1)

In the case when any of these conditions is satisfied, we say that the ses splits.

Proof See ‘Splitting lemma’ on Wikipedia. O
Remark 18.4. Note that (3) is strictly stronger than just having M = L @& N for general modules.
However, in our settindﬂ having M =2 L @ N is enough for splitness. Indeed, applying Hom 4(—, L)
yields an exact sequence

0 — Homu (N, L) — Homs(L & N,N) — Homa (N, N)

of left End4(N)-modules. Now the original ses splits is equivalent to having hf = idy, and so
is equivalent to the last map of this induced sequence to be surjective. Since everything is finite-
dimensional in our setting, and dimy Hom4(L & N, N) = dimgy Hom4 (L, N) 4+ dimg Hom4 (N, N),
exactness at Hom (L & N, N) means that the last map must be surjective.

3also OK for L, N finitely generated over a Noetherian A, see https://mathoverflow.net/questions/167701/
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The following justifies why we called eA projective before.

Lemma 18.5. The following are equivalent of a finitely genearted A-module P.

(1) P is projective, i.e. Hom (P, —) is an exact functor.

(2) Any ses 0 — L LM P o splits.

(3) P is a direct summand of a free module of finite rank.

Proof (1) = (2): We have a surjective map Hom4(P, M) Eka Hom4 (P, P), and so idp = fq for
some q: P — M.

(2) = (3): Since P is finitely generated, there is a surjective A-module homomorphism 7 : A®"™ — P
for some n. So we have a short exact sequence

s

0— Kerm — A®" 5 P — 0.
Hence, it follows by (2) and Lemma that P is a direct summand of A®™.

(3) = (1): We have learnt that indecomposable direct summands of A4 is given by the right ideal
eA of some primitive idempotent e = e? € A. Hence, by the assumption and Krull-Schmidt property
P =@}, e;A with e; primitive idempotents. Now we have a natural projection m : A®™ — P given
by sending the i-th identity 14 to e;, and a natural inclusion ¢ : P — A®™ given by t|¢,4 = (e;4 — A).
Note that 7 = idp.

Consider a surjective A-module homomorphism f : M — N and take any A-module homomorphism
p: P — N. This yields pr : A®™ — N, which can be lifted to some ¢’ : A®™ — M as A®" is projective.
Now we have

(fa')e = (pm)e=p,
which means that taking ¢ = ¢/+ give the required lift of p. ]

Remark 18.6. This result do not require finiteness anywhere, nor Krull-Schmidt; but this special case
yields an easier proof. For proof of the general case, see Rotman’s book Prop 3.3 and Thm 3.5.

There is a dual result under some restriction.

Lemma 18.7. Suppose A is finite dimensional and I is a finitely generated A-module. Then the
following are equivalent.

(1) I is injective, i.e. Homa(—, ) is an exact functor.
(2) An ses0— 1 — M — N — 0 splits.

(3) I is a direct summand of finite direct sum of DA.
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19 Projective cover and injective hull

By definition, any finitely generated module M comes a canonical surjective A-module homomorphism
A®" — M. One can expect the kernel of this map is ‘too large’, meaning that many direct summands
of the domain appear in the kernel. For more efficient calculation, we often use the most optimal
direct summand of A®".

Definition 19.1. A projective cover of an A-module M is a projective A-module P along with a
surjective A-module homomorphism p : Py — M such that the restriction p|g for every proper
submodule QQ C Py is non-surjective.

Dually, an injective hull of M is an injective module I along with an injective A-module homomorphism
i: M — Iy such that any proper quotient q : Iy — J yields a non-injective map qi.

Lemma 19.2. The following hold for all M € mod A.

(1) Projective cover Py; of M exists and is unique up to isomorphism. Moreover, it is characterised
by top(Par) = top(M).

(2) Injective hull Iny of M exists and is unique up to isomorphism. Moreover, it is characterised by
soc(Ipr) = soc(M).

Proof We show (1); (2) can be shown dually.

Suppose top(M) = M/rad(M) = SP™ @ - .- @ S&™. By consequence of Artin-Wedderburn, we have
S; = P;/rad P; for each i. Take Py = Pl@m1 @@ PPN

Since M — M/rad(M), the canonical surjection Pp; — M/rad(M) lifts to p : Py — M. As
M — M/rad(M), we have Im(p)+rad(M) = M, and so it follows from Nakayama lemma (Proposition
10.2{ (4)) that Im(p) = M, meaning that p is surjective.

Let @@ C Py be a submodule; we show that p|g is surjective implies @ = Pys. Indeed, p|g surjective
implies that top(Im(p|g)) = top(M). Hence, using the definition of Py being projective we have a
commutative diagram
Py
dq ~ g _

K p
s

Q2L top(M).

Since @ surjects onto top(M), for ¢ : Q < Pps the canonical inclusion we get that gug = top(M) =
top(P). Hence, we have Im(tq) +rad(P) = P. By Nakayama lemma, we have that Im(.q) = P, which
means that ¢ is also surjective; thus, ¢ is an isomorphism, as required. ]

Remark 19.3. The claim for projective cover is still true for artinian algebras; but the claim for injective
hull really needs finite-dimensionality of A.
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20 Resolution and Ext-group

Definition 20.1. A projective resolution P, of an A-module M is a sequence
da dy do
o= P =P —=FP —=M-=0

that is exact everywhere with Py projective for all k > 0. It is minimal if P, — Ker(di_1) is a
projective cover for all k > 1. The n-th syzygy of M is Ker(d,,) for (Ps,ds) the minimal projective
resolution of M.

Dually, an injective coresolution I, of M is a sequence
0-M2 Sy 2.

that is exact everywhere with Iy, injective for all k > 0. It is minimal if Cok(dy_1) < I is an injective
hull for all k > 1. The n-th cosyzygy of M is Cok(d,,—1) for (Ie,ds) the minimal projective resolution
of M.

Definition 20.2. For A-modules M, N, let P, be a projective resolution of M. Define for k >0
Extk (M, N) :=H*(Hom4 (P,, N))

—H*(- - <L Homu(Pps1, N) <22 Homy (Py, N) < ---)
_ {f:Pk—>N|(fd:Pk+1—>N):0}
{f: P > N|f=gdsomeg: P,_1 — N}

Note that Ext% (M, N) = Homy (M, N).
Similar to Hom4(—, —), ExtX (—, —) also commutes with finite direct sum in both variables.
There are some other ways to calculate the Ext-groups.
Proposition 20.3. For any A-modules M, N and any k > 0, we have
Ext¥ (M, N) = H*(Hom, (M, I,))
where 1o is an injective coresolution of N.
Proposition 20.4 (Dimension shifting). For each k > 1, there are natural isomorphisms
Ext} (Q(M), N) = Ext"'(M, N) = Ext (M, Q"' N),

where Hom 4 (X,Y) (resp. Homa(X,Y')) is the quotient of Homa(X,Y') by the subspace consisting of
f:+ M — N that factors through a projective (resp. injective) A-module, i.e. there is a commutative
diagram

for some projective (resp. injective) module Z .

Proof Consider the space Zj := {f : Py — N | fdgy+1 = 0} in the definition of Ext¥ (M, N). Since
we have a exact sequence Py 1 — Py Lk (M) — 0, applying Hom 4(—, V) yields an exact sequence

0 — Homa(QF(M), N) = Homa(Py, N) —™*% Homu(Pyi1, N).

By exactness, we have Z;, = Ker(— o djy1) = Hom(Q2*(M), N) sending each f € Z; to f so that
fo=1r.
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It remains to show that this isomorphisms restricts to one between By := Im(— o d) and P :=
{f € Homy4(QF(M), N) that factors through projective}. Clearly, any f € By, (by definition) factors
through a projective P,_; and so By C P. For f : QF(M) — N that factors through a projective, say,
P, we want fp = gd, some g. Consider 0 — Q¥(M) — P, — Q¥1(M) — 0 and apply Homa(—, N)
yields

—odg41

0 — HomA(Q (M), N) — Homy (Py, N) ——% Hom(Pj11, N).

Exercise 20.5. Suppose that M, N € mod A.
(1) Show that when M or N is simple, we have Homa(Q(M), N) = Ext!y (M, N) = Hom4 (M, Q" Y(N)).

(2) Show that when every projective A-module is injective, then Ext!(M, N) = Hom 4 (M, N) where
Hom 4 (M, N) is the quotient of Hom (M, N) by all homomorphisms factoring through a projec-
tive module.

Proposition 20.6. Consider indecomposable projective modules Py, P, with simple tops Sy, Sy respec-

tively. Then we have an isomorphism of k-vector spaces ExtYy(Sy, Sy) = Hom4 (rad(P;)/rad?(Py), S,).
rad(A)
e

Moreover, the k-dimension of this space is the same as that of e, rad?(A) -

Proof By the previous exercise, we have
Ext! (S, Sy) = Homa(Q(S:), Sy) = Homy(rad(Py), Sy) = Homy (rad(Py)/ rad?(Py), S,)-
For the last part, first we have by Schur’s lemma
Hom 4 (rad(P;)/ rad?(Py), S,) = Hom4(Sy, rad(Py)/ rad?(P;))
as k-vector space, which then yields

Hom 4 (S, rad(P;)/ rad?(P;)) = Homa (P, rad(P;)/ rad?(P,))
rad(4) . . rad(A)

= Homu(eyA,ea——s—<) Ze e

rad?(A) “rad?(4) Y

where the last isomorphism uses Yoneda’s lemma. ]

Remark 20.7. Note that when A = k@Q/I a bounded path algebra, then arrows from z to y in @
correspond bijectively to basis elements of Extk(Sx, Sy)-

21 Induced long exact sequence

Definition 21.1. Suppose Co = (Ci,di)i,Cy = (C}.,d} ) are (chain) complexes of A-modules. A
chain map is fo : Co — Cy given by A-module homomorphisms f, : Cy, — C}, over all k € Z such that
d fro = frr1di.

Two chain maps fe,ge : Ce — C. are homotopic (or “the same up to homotopy”) if there exists a
sequence of homomorphisms (hy, : Cy, — Cp_1)nez such that fn, — gn = d,_1hp + hpy1d, for alln € Z.
A chain map homotopic to 0 is said to be null-homotopic, or just call it a null-homotopy.

Theorem 21.2 (Comparison theorem). An A-module homomorphism f : M — N extends to a
chain map on their projective resolutions, as well as a chain map on their injective coresolutions.
Moreover, changing the choice of (co)resolution results in a homotopic chain map.
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Proof Suppose P,, P, are projective resolutions of M and N respectively. Define the desired chain
map fe : (Po = M — 0) = (P, = N — 0) starting from f_1 = f: M — N inductively as follows.
We take P_y = M and P’{ = N.

Given f, : P, — P/ defined, using the fact that P, is projective we can lift f,d,+1, which yields a
commutative diagram

PnJrl
3fn+1 — -
_ - lfndnqu
27 d
/ n+1 i
Pn+1 Im(dn—i-l)a

with the desired chain map property d/, ; fn+1 = fadn+1-

Independence up to homotopy: EXERCISE.

The claim for injective coresolution can be shown analogously. O
Notation. For a complex Co = (---Cy LN Ci+1 — ), and z; € Ker(dy), denote by [zi] =

2k + Im(dkfl) .

Lemma 21.3. Suppose C,o, CL are complexes of A-modules and fo : Co — C) is a chain map. Then
for each k € Z, we have an induced A-module homomorphism H*(f,) : H*(Cy) — H*(C.) given
by [zx] = [fr(zk)] for any zp € Ker(dg : Cy, — Cry1). Moreover, H* preserves identity map and
additive, as well as intertwines with composition, i.e. H is a functor from the category of complexes
of A-modules to the category of A-modules.

Proof Since di(z;) = 0, we have

di(fr(zk)) = fes1dr(z) = fey1(0) =0,

i.e. fi restricts to a map Ker(dy) — Ker(d},).

Suppose now that z; € Im(di_1), say, zx = dg—_1(zk—1). Then we have

fi(z) = frdip—1(z3-1) = djp_y fr1 (Tr-1),
i.e. Im(filim(a, ) C Im(dj,_,). Hence, H*(f,) : H*(Cy) — H*(C}) is well-defined.

We leave the rest as exercise. O

The following is a powerful tool in computing Ext-groups.

Theorem 21.4 (Induced long exact sequence). Suppose 0 - X —Y — Z — 0 is a short exact
sequence of A-modules. For any A-module M, there is the following long exact sequence:

0 — Homy (M, X) — Homuy(M,Y) — Homua (M, Z) —
Extl (M, X) — ExtY(M,Y) — Ext\ (M, Z) -
.- — Exth (M, X) — Exth (M, Y) = Ext*(M, Z) — - -

Proof omitted.

21.1 Other homological lemmata

Lemma 21.5 (Horseshoe lemma). Suppose 0 — L — M — N — 0 is a short exact sequence.
Then a projective resolution Py of L and a projective resolution Qe induces a projective resolution of
M given by with degree k > 0 term given by P @ Q.
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In pictorial form:

PL Pl o PN PN
pf Pfao Ry Py
0 L M N 0

Lemma 21.6. (1) Suppose there are exact rows and homomorphisms w,u such that the left-hand
square commutes:

L—1 9 N 0
|
lw O iu I Ju
Y
L— M ——>N 0
f g

Then there exists a unique homomorphism v : N — N’ such that the right-hand square commutes.
Moreover, if w,u are isomorphisms, then so is v.

(2) Suppose there are exact rows and homomorphisms u,v such that the right-hand square commutes:

0 L—1 9 N
|
=) iu O iv
Y
0 —sM———>N
f g

Then there exists a unique homomorphism w : L — L' such that the left-hand square commutes.
Moreover, if u,v are isomorphisms, then so is w.

Proof Diagram chasing. O

Lemma 21.7 (Short 5-lemma). Suppose there is a commutative diagram

0 L—1 pm—92 N 0
iw @) J{u O \LU
0 L — M’ — N’ 0
! g
with exact rows. Then the following hold.
o If w,v are both injective, then so is u.
o Ifw,v are both surjective, then so is v.
Proof Diagram chasing. O
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21.2 Ext-group versus Extensions

The previous proposition has a better intuition using another manifestation of the Ext-groups.

Definition 21.8. Consider two extensions of N by L given by short exact sequences O — L i) M2

N —-0and0— L i—) M L5 N =0 are equivalent if there is a commutative diagram

0 L— 4 oy N 0
lu
0 L——=M—>N 0
f g

Remark 21.9. The map u is necessarily an isomorphism (as a consequence of 5-lemma (Lemma [21.7)
or snake lemma).

Theorem 21.10. There is a bijective correspondence

equivalence classes of 1
{ extensions of N by L } < Exty (N, L)

such that the split exact sequence corresponds to 0 € Exti‘(N, L).

Proof Let £(N,L) be the left-hand set. Let us first define a map ¢ : £(N,L) — Exty(N,L).

Consider an extension & : 0 — L i> M % N = o. Suppose that P, is a projective resolution of

N. Then, by the same yoga as in the proof of Comparison Theorem (Theorem , we can lift
idy : N — N to a chain map:

P2 . p_ M. p_ b N 0
o e e
Y
£ 0 L—l w2 N 0

In particular, we have d5(a) = aids = 0, so we have an element [a1] € Ext' (N, L) := Ker(d})/ Im(d}).

We claim that [£] — [a] is a well-defined map.

e Changing projective resolution: By the Comparison Theorem, we get a new chain map (o),
that is homotopic to (ay,)n. Spelling this out means that of — a; = 0 hy + hod1 = hody =
di(ho) € Im(d7). Hence, [o)] = [a1].

e Changing equivalence extension: By the definition of equivalence betwen extensions, we have a
commutative diagram

-2 .p " . p _* . N 0
o

¢ 0 L—t % N 0
|

¢ 0 L—t w4 N 0

This means that ¢’ defines the same element [a;] € ExtY (N, L).

Now we show that if £ is a split extension, then ¢([{]) = 0. Indeed, since ¢ is well-defined map to
equivalence of extensions, we can just take the canonical split extension L ¢& N, then the canonical
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inclusion ¢ : N — L & N yields the following commutative diagram:

p—® . p M p_ M N 0
Lk
t
¢ 0 L— Y N O N 0

Hence, ¢([£]) = 0 as required.

Now we need to construct the inverse of ¢.

e Construction of assignment [a] — [£]: Consider the short exact sequence 0 — Ker dy 4 R D,
N — 0 Applying Homa(—, L) and using Ext! (P, —) = 0 for any projective module P, we get
an exact sequence

Hom (P, L) — Hom(Kerdg, L) % Ext4(N,L) — 0

from the induced long exact sequence. Hence, for each [a] € Ext! (N, L), we have some @ €
Hom 4 (Ker dy, L) such that 0(@) = ozlﬂWe form the pushout M of i and f, i.e.

Py L
S

M := Cok ((i, —a) : Kerdy — Py®L) = , where S := {(i(z), - f(z)) € Po®L | z € Q(N)},

then we get a commutative diagram

0 Kerdy —— > Py —% o N 0
P
¢ 0 A S 0

where ag(p) := (0,p) + 5, f(I) := ({,0) + S, and g([p,!]) := j(p). Note that the bottom row is
also exact (Exercise: check this!). We now have an assignment [o] — [£].
e Well-definedness: Suppose we choose another o € [a] and associated @ : Kerdy — L. Then

following the same procedure we have another extension 0 — L f—> M %5 N — 0 and homo-
morphism o : Py — M’. Define 6§ : M — M’ by (I,p) + S — f'(I) + ay(p) € M’ yields a
commutative diagram:

¢ 0 L M N 0
}
¢ 0 L—L w2 N 0
Hence, we have [¢] = [¢].

e Inverse to ¢: This is straightforward to check that ¢f = id by construction; for ¢ = id, note
that ay induces naturally @7 : Ker(dp) — L which allows us to check it is compatible with 6.

O]

Extjlél(N ,L) is an abelian group, so there is a binary operation. There is indeed a corresponding
operation on short exact sequences (which we omit in this text).

Theorem 21.11. The set of equivalence classes of short exact sequence with first term L and last
term N form an abelian group under Baer sum, and this abelian group is isomorphic to Extk(N, L),
with the zero element corresponding to the equivalence class of split short exact sequences.

4This is, in fact, the homomorphism induced by some Pi — L by looking at the definition of Ext’ (N, L) as a homology
group of the Hom-complex.

42



There exists similar description for Ext'y (N, L) but the notion of splitness is not as nice as in the case
of ses. In any case, for us, we only need to keep in mind that Ext! (N, L) contains information about
short exact sequence of the form 0 — L — M — N — 0; c.f. Proposition [20.6] and relation with
arrows of quiver. Having said that, we should warn that equivalence classes of ses is not the same
as isomorphism classes of the middle term, i.e. there exists non-equivalent ses with the same middle
term.
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