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Convention

Throughout the course, k will always be a field. All rings are unital and associative. We only really
work with artinian rings (but sometimes noetherian is also OK). We always compose maps from right
to left.

1 Reminder on some basics of rings and modules

Definition 1.1. Let R be a ring. A right R-module M is an abelian group (M,+) equipped with a
(linear) R-action on the right of M · : M ×R→M , meaning that for all r, s ∈ R and m,n ∈M , we
have

• m · 1 = m,

• (m+ n) · r = m · r + n · r,

• m · (r + s) = m · r +m · s,

• m(sr) = (ms)r.

Dually, a left R-module is one where R acts on the left of M (details of definition left as exercise).
Sometimes, for clarity, we write MA for right A-module and AM for left A-module.

Note that, for a commutative ring, the class of left modules coincides with that of right modules.

Example 1.2. R is naturally a left, and a right, R-module. Both are free R-module of rank 1. Some-
times this is also called regular modules but it clashes with terminology used in quiver representation
and so we will avoid it.

In general, a free R-module F is one where there is a basis {xi}i∈I such that for all x ∈ F , x =∑
i∈I xiri with ri ∈ R. We only really work with free modules of finite rank, i.e. when the indexing

set I is finite. In such a case, we write Rn.

Convention. All modules are right modules unless otherwise specified.

Definition 1.3. Suppose R is a commutative ring. A ring A is called an R-algebra if there is a (unital)
ring homomorphism θ : R→ A with image θ(R) being in the center Z(A) := {z ∈ A | za = az ∀a ∈ A}
of A. In such a case, A is an R-module and so we simply write ar for a ∈ A, r ∈ R instead of aθ(r).

An (unital) R-algebra homomorphism f : A→ A′ is a (unital) ring homomorphism f that intertwines
R-action, i.e. f(ar) = f(a)r.

The dimension of a k-algebra A is the dimension of A as a k-vector space; we say that A is finite-
dimensional if dimkA <∞.
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Note that commutative ring theorists usually use dimension to mean Krull dimension, which has a
completely different meaning.

Example 1.4. Every ring is a Z-algebra.

The matrix ring Mn(R) given by n-by-n matrices with entries in R is an R-algebra.

We will only really work with k-algebras, where k is a field. Most of the time, we will also assume k is
algebraically closed for simplicity. But it worth reminding there are many interesting R-algebras for
different R, such as group algebra. Recall that the characteristic of R, denoted by charR, is 0 if the
additive order of the identity 1 is infinite, or else the additive order itself.

Example 1.5. Let G be a finite (semi)group and R a commutative ring. Let A := R[G] be the free
R-module with basis G, i.e. every a ∈ A can be written as the formal R-linear combination

∑
g∈G λgg

with λg ∈ R. Then group multiplication extends (R-linearly) to a ring multiplication on R[G], making
A an R-algebra.

Example 1.6. Recall that the direct product of two rings A,B is the ring A×B = {(a, b) | a ∈ A, b ∈
B} with unit 1A×B = (1A, 1B). It is straightforward to check that if A,B are R-algebras, then A×B
is also an R-algebra.

Example 1.7. Suppose that A is a k-algebra and B is a k-subspace of A containing 1A and closed
under multiplication. Then B is also a k-algebra. We call such a B a subalgebra of A. For a concrete
example, the space of diagonal matrices forms a subalgebra of Mn(k).

Definition 1.8. A map f : M → N between right R-modules M,N is a homomorphism if it is a
homomorphism of abelian groups (i.e. f(m + n) = f(m) + f(n) for all m,n ∈ M) that intertwines
R-action (i.e. f(mr) = f(m)r for all m ∈ M and r ∈ R). Denote by HomR(M,N) the set of all
R-module homomorphisms from M to N . We also write EndR(M) := HomR(M,M).

Lemma 1.9. HomR(M,N) is an abelian group with (f + g)(m) = f(m) + g(m) for all f, g ∈
HomR(M,N) and all m ∈ M . If R is commutative, then HomR(M,N) is an R-module, namely,
for a homomorphism f : M → N and r ∈ R, the homomorphism fr is given by m 7→ f(mr).

Definition 1.10. EndR(M) is an associative ring where multiplication is given by composition and
identity element being idM . We call this the endomorphism ring of M .

Lemma 1.11. If A is an R-algebra over a commutative ring R, then any right A-module is also an
R-module, and HomA(M,N) is also an R-module (hence, EndR(M) is an R-algebra).

Example 1.12. A ∼= EndA(A) given by a 7→ (1A 7→ a) is an isomorphism of rings (or of R-algebras
if A is an R-algebra). Note that if we work with left modules, then A ∼= EndA(AA)op, where (−)op

denotes the opposite ring given by the same underlying set with reverse direction of multiplication, i.e.
a ·op b := b · a.

Recall that an R-module M is finitely generated if there exists as surjective homomorphism Rn�M ,
or equivalently, there is a finite set X ⊂ M such that for any m ∈ M , we have m =

∑
x∈X xrx for

some rx ∈ R.

Notation. We write modA for the collection of all finitely generated right A-modules.
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2 Indecomposable modules and Krull-Schmidt property

We recall two types of building blocks of modules. The first one is indecomposability.

Definition 2.1. Let M be a R-module and N1, . . . , Nr be submodules. We say that M is the direct
sum N1⊕· · ·⊕Nr of the Ni’s if M = N1+ · · ·+Nr and Nj∩(N1+ · · ·+Nĵ+ · · ·Nr) = 0. Equivalently,
every m ∈M can be written uniquely as n1 + n2 + · · ·+ nr with ni ∈ Ni for all i. In such a case, we
write M ∼= N1 ⊕ · · · ⊕Nr. Each Ni is called a direct summand of M .

M is called indecomposable if M ∼= N1 ⊕N2 implies N1 = 0 or N2 = 0.

We say that M =
⊕m

i=1Mi is an indecomposable decomposition (or just decomposition for short if
context is clear) of M if each Mi is indecomposable.

Convention. We write (n1, . . . , nr) instead of n1+· · ·+nr with ni ∈ Ni for a direct sum N1⊕· · ·⊕Nr.

We will only work with direct sum with finitely many indecomposable direct summands.

Example 2.2. Suppose that RR is indecomposable as an R-module. If F is a free R-module of rank
n, then R⊕n := R⊕R⊕ · · · ⊕R (with n copies of R) is a decomposition of F .

Example 2.3. Consider the matrix ring A := Matn(k) over a field k. Let V be the ‘row space’, i.e.
V = {(vj)1≤j≤n | vj ∈ k} where X ∈ Matn(k) acts on v ∈ V by v 7→ vX (matrix multiplication
from the right). Since for any pair u, v ∈ V , there always exist X so that v = uX, we see that there
is no other A-submodule of V other than 0 or V itself. Hence, V is an indecomposable A-module.
In particular, the n different ways of embedding a row into an n-by-n-matrix yields an A-module
isomorphism between V ⊕n ∼= AA, which is the decomposition of the free A-module AA.

The above example shows indecomposability by showing that V is a simple A-module, which is
a stronger condition that we will come back later. Let us give an example of a different type of
indecomposable (but non-simple) modules.

Example 2.4. Let A = k[x]/(xk) the truncated polynomial ring for some k ≥ 2. This is an al-
gebra generated by (1A and) x, and an A-module is just a k-vector space V equipped with a linear
transformation ρx ∈ Endk(V ) (representing the action of x) such that ρkx = 0.

Consider a 2-dimensional space V = k{v1, v2} and a linear transformation

ρx =

(
0 0
1 0

)
.

By definition (av1 + bv2)x = (a + b)v2, and so any submodules must contains kv2, i.e. v2 spans a
unique non-zero submodules. If, on the contrary, V is not indecomposable, then we have V = U1⊕U2

for (at least) two non-zero submodules U1, U2. But v2 must be contained in any submodule of V , hence,
we have v2 ∈ U1 ∩ U2, i.e. U1 ∩ U2 6= 0 – a contradiction not decomposability.

Proposition 2.5. There is a canonical R-module isomorphism

HomA(
⊕m

j=1Mj ,
⊕n

i=1Ni)
∼= //

⊕
i,j HomA(Mj , Ni)

f � // (πifιj)i,j

where ιj : Nj →
⊕

j Nj is the canonical inclusion for all j and πi :
⊕

iMi → Mi is the canonical
projection for all i.

One can think of the right-hand space above as the space of m-by-n matrix with entries in each
corresponding Hom-space.

3



Recall that an idempotent e ∈ R is an element with e2 = e. For example, the identity map
idM ∈ EndA(M) (the unit element of the endomorphism ring) is an idempotent. From the previ-
ous proposition, we see that for a decomposition M = N1 ⊕N2, we have idempotents

ei : M
πi−→ Ni

ιi−→M

for both i = 1, 2. Hence, being decomposable implies existence of multiple idempotents; this turns out
characterise indecomposability completely.

Proposition 2.6. Let A be a finite-dimensional algebra and M be a finite-dimensional non-zero A-
module. Then the following hold.

(1) (Fitting’s lemma) For any f ∈ EndA(M), there exists n ≥ 1 such that M ∼= Ker(fn)⊕ Im(fn).

(2) The following are equivalent.
• M is indecomposable.

• The endomorphism algebra EndA(M) does not contain any idempotents except 0 and idM .

• Every homomorphism f ∈ EndA(M) is either an isomorphism or is nilpotent.

• EndA(M) is local (see below).

Remark 2.7. It is known that if M is only artinian or only noetherian, then Fitting’s lemma (and
hence part (2)) fails. Nevertheless, in general, the proposition still hold for M that is both artinian
and noetherian.

Let us briefly recall various characterisation of local rings.

Definition 2.8. A ring R is local if it has a unique maximal right (equivalently, left; equivalently,
two-sided) ideal.

Remark 2.9. When R is non-commutative, the ‘non-invertible elements’ are the ones that do not admit
(right) inverses.

Lemma 2.10. The following are equivalent for a finite-dimensional algebra A.

• A is local (i.e. has a unique maximal right ideal).

• Non-invertible elements of A form a two-sided ideal.

• For any a ∈ A, one of a or 1− a is invertible.

• 0 and 1A are the only idempotents of A.

• A/J(A) ∼= k as rings, where J(A) is the two-sided ideal of A given by the intersection of all
maximal right (equivalently, left) ideals.

Example 2.11. Consider the upper triangular 2-by-2 matrix ring

A =

(
k k
0 k

)
=

{
(ai,j)1≤i≤j≤2

∣∣∣∣ ai,j ∈ k ∀i ≤ jai,j = 0 ∀i > j

}
.

Let M = {(x, y) ∈ k2} be the 2-dimensional space where A acts as matrix multiplication (on the
right). Suppose f ∈ EndA(M), say, f(x, y) = (ax+ by, cx+ dy) for some a, b, c, d ∈ k. Then being an
A-module homomorphisms means that

(ax+ by, cx+ dy)

(
u v
0 w

)
= f

(
(x, y)

(
u v
0 w

))
= (aux+ bvx+ wy, cux+ dvx+ dwy)

for all u, v, w, x, y ∈ k. This means that{
buy = bvx+ bwy

avx+ bvy + cxw = cux+ dvx
.
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The first line yields b = 0, and the second line yields c = 0 = b and a = d. In other words,
EndA(M) ∼= k which is clearly a local algebra. Hence, M is indecomposable.

A natural question is to ask when is a decomposition of modules, if it exists, unique up to permuting
the direct summands.

Definition 2.12. We say that an indecomposable decomposition M =
⊕m

i=1Mi is unique if any other
indecomposable decomposition M =

⊕n
j=1Nj implies that m = n and there is a permutation σ such

that Mi
∼= Nσ(i) for all 1 ≤ i ≤ m. modA is said to be Krull-Schmidt if every (finitely generated)

A-module M admits a unique indecomposable decomposition.

Theorem 2.13. For a finite-dimensional algebra A, modA is Krull-Schmidt.

Remark 2.14. This is a special case of the Krull-Schmidt theorem - whose proof we will omit to save
time.

Theorem 2.15 (Krull-Schmidt). Suppose M =
⊕m

i=1Mi is an indecomposable decomposition of
M . If EndA(Mi) is local for all 1 ≤ i ≤ m, then the decomposition of M is unique.

Remark 2.16. Some people refer to this result as Krull-Remak-Schmidt theorem.
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3 Simple modules, Schur’s lemma

Definition 3.1. Let M be an R-module.

(1) M is simple if M 6= 0, and for any submodule L ⊂M , we have L = 0 or L = M .

(2) M is semisimple if it is a direct sum of simples.

Remark 3.2. In the language of representations, simple modules are called irreducible representations,
and semisimple modules are called completely reducible representations.

Remark 3.3. Note that a module is semisimple if and only if every submodule is a direct summand.

Example 3.4. Consider the matrix ring A := Matn(k) over a field k. Then the row-space repre-
sentation V is an n-dimensional simple module. Since AA ∼= V ⊕n, we have that AA is a semisimple
module.

Example 3.5. The ring of dual numbers is A := k[x]/(x2). The module (x) is simple. The regular
representation A is non-simple (as (x) = AxA is a non-trivial submodule). It is also not semisimple.
Indeed, (x) is a submodule of A, and the quotient module can be described by kv where v = 1+(x). If A
is semisimple, then the 1-dimensional space kv is isomorphic to a submodule of A. Such a submodule
must be generated by a+ bx (over A) for some a, b ∈ k. If a 6= 0, then (a+ bx)A = A. So a = 0, and
kv ∼= (x), a contradiction.

Lemma 3.6. S is a simple A-module if and only if for any non-zero m ∈ S, we have mA := {ma |
a ∈ A} = S. In particular, simple modules are cyclic (i.e. generated by one element).

Let us see how one can find a simple module.

Definition 3.7. Let M be an A-module and take any m ∈M . The annihilator of m (in A) is the set
AnnA(m) := {a ∈ A | ma = 0}.

Note that AnnA(m) is a right ideal of A - hence, a right A-module.

Lemma 3.8. For a simple A-module S and any non-zero m ∈ S, we have S ∼= A/AnnA(m) as A-
module. In particular, if A is finite-dimensional, then every simple A-module is also finite-dimensional.

Suppose I is a two-sided ideal of A. Then we have a quotient algebra B := A/I. For any B-module
M , we have a canonical A-module structure on M given by ma := m(a + I). This is (somewhat
confusingly) the restriction of M along the algebra homomorphism A� A/I.

Lemma 3.9. Suppose B := A/I is a quotient algebra of A by a strict two-sided ideal I 6= A. If
S ∈ modB is simple, then S is also simple as A-module

Proof This follows from the easy observation that any a B-submodule of SB is also a A-submodule
of SA under restriction.

The following easy, yet fundamental, lemma describes the relation between simple modules. Recall that
a division ring is one where every non-zero element admits an inverse (but the ring is not necessarily
commutative).

Lemma 3.10 (Schur’s lemma). Suppose S, T are simple A-modules, then

HomA(S, T ) =

{
a division ring, if S ∼= T ;

0, otherwise.

Remark 3.11. Note that if A is an R-algebra, then the division ring appearing is also an R-algebra
(since it is the endomorphism ring of an A-module). In particular, if R is an algebraically closed field
k = k, then any division k-algebra is just k itself.
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Proof The claim is equivalent to saying that any f ∈ HomA(S, T ) is either zero or an isomorphism.
Since Im(f) is a submodule of T , simplicity of T says that Im(f) = 0, i.e. f = 0, or Im(f) ∼= T . In
the latter case, we can consider Ker(f), which is a submodule of S, so by simplicity of S it is either 0
or S itself. But this cannot be S as this means f = 0, hence, Im(f) ∼= T implies that Ker(f) = 0, i.e.
f is an isomorphism.

Example 3.12. In Example 2.11, we showed that the upper triangular 2-by-2 matrix ring A has a
2-dimensional indecomposable module P1 = {(x, y) | x, y ∈ k2} given by ‘row vectors’. It is straightfor-
ward to check that there is a 1-dimensional (hence, simple) submodule given by S2 := {(0, y) | y ∈ k2}.

Consider the module S1 := P1/S2. This is a 1-dimensional (simple) module spanned by, say, w with
A-action given by

w

(
a b
0 c

)
:= wa.

Consider a homomorphism f ∈ HomA(S1, S2). This will be of the form w 7→ (0, y) for some y ∈ k
and has to satisfy

(0, ya) = (0, y)a = f(wa) = f(w

(
a b
0 c

)
) = f(w)

(
a b
0 c

)
= (0, y)c = (0, yc)

for any a, b, c ∈ k. Hence, we must have y = 0, which means that f = 0. In particular, by Schur’s
lemma S1 � S2.

Lemma 3.13. Suppose that S is a simple A-module. Consider a semisimple A-module M = S1 ⊕
· · · ⊕ Sn with Si ∼= S for all i. Then EndA(M) ∼= Matn(D), where D := EndA(S).

Proof We have canonical inclusion ιj : Sj ↪→M and projection πi : M�Si. So for f ∈ EndA(M),
we have a homomorphism πifιj : Sj → Si, and by Schur’s lemma, this is an element of D. Now we
have a ring homomorphism

EndA(M)→ Matr(D), f 7→ (πifιj)1≤i,j≤r,

which is clearly injective. Conversely, for (ai,j)1≤i,j≤r ∈ Matr(D), we have an endomorphism M
πj
�

Sj
ai,j→ Si

ιi
↪→M , which yields the required surjection.

Example 3.14. For a tautological example, take A = k to be just a field. Then we have a 1-
dimensional simple A-module S = k with EndA(S⊕n) = Matn(EndA(k)) = Matn(k). Note that now
we have an n-dimensional simple Matn(k)-module (given by the row vectors).
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4 Quiver and path algebra

Definition 4.1. A (finite) quiver is a datum Q = (Q0, Q1, s, t : Q1 → Q0) for finite sets Q0, Q1. The
elements of Q0 are called vertices and those of Q1 are called arrows. The source (resp. target)of an
arrow α ∈ Q1 is the vertex s(α) (resp. t(α)).

This is equivalent to specifying an oriented graph (possibly with multi-edges and loops); Gabriel coined
the term quiver as a way to emphasise the context is not really about the graph itself.

Definition 4.2. Let Q be a quiver.

• A trivial path on Q is a “stationary walk at i”, denoted by ei for some i ∈ Q0.

• A path of Q is either a trivial path or a word α1α2 · · ·α` of arrows with s(αi) = t(αi+1).

The source and target functions extend naturally to paths, with s(ei) = i = t(ei). Two paths p, q can
be concatenated to a new one pq if t(p) = s(q); note that our convention is to read from left to right .

Definition 4.3. The path algebra kQ of a quiver Q is the k-algebra whose underlying vector space is
given by

⊕
p:paths of Q kp, with multiplication given by path concatenation. That is x ∈ kQ is a formal

linear combinations of paths on Q.

Note that eiej = δi,jei, where δi,j = 1 if i = j else 0. In other words, ei is an idempotent of the path
algebra kQ. Moreover, we have an idempotent decomposition

1kQ =
∑
i∈Q0

ei

of the unit element of kQ.

Example 4.4. Consider the one-looped quiver, a.k.a. Jordan quiver,

Q =
(
•

α

��

)
Then kQ has basis {αk | k ≥ 0} (note that the trivial path at the unique vertex is the identity element).
Then kQ ∼= k[x].

An oriented cycle is a path of the form v1 → v2 → · · · vr → v1, i.e. starts and ends at the same vertex.
If Q does not contain any oriented cycle, we say that it is acyclic.

Proposition 4.5. kQ is finite-dimensional if, and only if, Q is finite acyclic.

Proof If there is an oriented cycle c, then ck ∈ kQ for all k ≥ 0, and so kQ is infinite-dimensional.
Otherwise, there are only finitely many paths on Q.

Example 4.6. Consider the linearly oriented ~An-quiver

Q = ~An = 1
α1−→ 2

α2−→ · · · αn−1−−−→ n.

Then the path algebra kQ has basis {ei, αj,k | 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ n}, where αj,k := αjαj+1 · · ·αk.

Consider the upper triangular n-by-n matrix ring
k k · · · k
0 k · · · k

0 0
. . .

...
0 0 0 k

 =

{
(ai,j)1≤i≤j≤n

∣∣∣∣ ai,j ∈ k ∀i ≤ jai,j = 0 ∀i > j

}
.
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Denote by Ei,j the elementary matrix whose entries are all zero except at (i, j) where it is one. This
ring is isomorphic to kQ via Ei,i 7→ ei and Ei,j 7→ αi,j−1 for 1 ≤ j < k ≤ n.

From now on, we will focus in the following setting.

Assumption 4.7. (1) Quivers are finite (i.e. finitely many vertices and arrows).

(2) Representations (equivalently, modules) are finite-dimensional.

5 Duality

For a quiver Q, the opposite quiver Qop has the same set of vertices with the reverse direction of
arrows, i.e. Qop

0 = Q0, Q
op
1 = Q1, sQop = tQ, and tQop = sQ.

Exercise 5.1. Show that there is a canonical isomorphism (kQ)op ∼= k(Qop).

Let M be a finite-dimensional A-module. Then we have a dual space

D(M) := M∗ := Homk(M, k),

which has a natural Aop-module structure, namely, (a·f)(m) := f(ma) for any a ∈ A, f ∈M∗,m ∈M .
Moreover, for an A-module homomorphism θ : M → N , we have also an Aop-module homomorphism
θ∗ : N∗ →M∗ with θ∗(f)(m) = f(θ(m)).

Lemma 5.2. There is a k-vector space isomorphism HomA(M,N) ∼= HomAop(DN,DM).

Proof Just a straightforward check that (θ∗)∗ = θ.

We note as a fact that D preserves indecomposability of (finite-dimensional) modules. This can
be seen using the fact that HomA(M,N) ∼= HomAop(DN,DM) and can be upgraded to an algebra
isomorphism for the case when N = M ; then uses characterisation of indecomposable module by local
endomorphism ring.

Example 5.3. The left A-module AA yields a right A-module structure on D(A). More generally,
suppose we have a left ideal Ae of A for some element e ∈ A, then D(Ae) is a right ideal of A.

Remark 5.4. There is another natural duality, which we will not used, between modA and modAop

given by sending M to HomA(M,A). In general, this duality is different from the k-linear dual unless
A is a so-called symmetric algebra, meaning that A ∼= DA as bimodule; in which case, HomA(−, A)
dual is naturally isomorphic to D (as functors).

6 Representations of quiver

Definition 6.1. A k-linear representation of Q is a datum ({Mi}i∈Q0 , {Mα}α∈Q1) where Mi is a
k-vector space for each i ∈ Q0 and Mα : Ms(α) →Mt(α) is k-linear map for each α ∈ Q1.

Such a representation is finite-dimensional if dimkMi <∞ for all i ∈ Q0.

Notation. For a representation M of Q, we take Mp := Mα1 · · ·Mα` for a path p = α1 · · ·α`.

It is easy to notice that every representation of Q is equivalent to a kQ-module, namely,

representation ({Mi}i∈Q0 , {Mα}α∈Q1)↔
kQ-module

∏
i∈Q0

Mi

s.t.
∑

p:path λpp acts as
∑

p λpMp.
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Example 6.2 (Simple). For x ∈ Q0, denote by Sx (or S(x)) the representation given by putting a
1-dimensional space on x, zero on all other vertices, and zero on all arrows. This corresponds to a
1-dimensional kQ-module and so we call it the simple at x.

Note: at this stage, it is not clear if these are all the simple kQ-modules (up to isomorphism) yet.

Example 6.3 (Projective). For x ∈ Q0, denote by Px (or P (x)) the representation given by
({My}y∈Q0 , {Mα}α∈Q1), where

My :=
⊕

p:path with
s(p)=x,
t(p)=y

kp, and (Mα : My →Mz) :=
∑
pα=q

(My � kp id−→ kq ↪→Mz).

This is called the projective at x. This corresponds to the right ideal exkQ of kQ.

Example 6.4 (Injective). Dual to the projective module construction, for x ∈ Q0, denote by Ix (or
I(x)) the representation given by ({My}y∈Q0 , {Mα}α∈Q1), where

My :=
⊕

p:path with
s(p)=y,
t(p)=x

kp, and (Mα : My →Mz) :=
∑
p=αq

(My � kp id−→ kq ↪→Mz).

This is called the injective at x. This corresponds to the dual of the left ideal generated by ex, i.e.
D(kQex).

Example 6.5. The representation of Q = ~An given by

Ui,j := 0→ · · · 0→ k id−→→ · · · id−→ k→ 0→ · · · → 0

with a copy of k on vertices i, i+1, . . . , j is the uniserial kQ-module corresponding to the column space
(under the isomorphism of kQ with the lower triangular matrix ring) with non-zero entries in the k-th
row for i ≤ k ≤ j.

Example 6.6. Let Q be the Jordan quiver with unique arrow α. Then a representation of Q is
nothing but an n-dimensional vector space equipped with a linear endomorphism, equivalently, an
n-by-n matrix.

Definition 6.7. A homomorphism f : M → N of (k-linear) quiver representations M = (Mi,Mα)i,α
and N = (Ni, Nα)i,α is a collection of linear maps fi : Mi → Ni that intertwines arrows’ actions, i.e.
we have a commutative diagram

Mi
fi //

Mα

��

Ni

Nα
��

Mj
fj
// Nj

for all arrows α : i→ j in Q.

A homomorphism f = (fi)i∈Q0 : M → N of quiver representations is injective, resp. surjective, resp.
an isomorphism, if every fi is injective, resp. surjective, resp. an isomorphism, for all i ∈ Q0.

Example 6.8. Let Q be the Jordan quiver. Recall that a representation of Q is equivalent to a
choice of n-by-n matrix Mα. By definition, the isomorphism class of such a representation is given
by the conjugacy classes of Mα. If we assume k is algebraically closed, then a representative of the
isomorphism class of Mα is given by the Jordan normal form of Mα. That is, Mα can be block-
diagonalise into Jordan blocks Jm1(λ1), . . . , Jml(λl), where Jm(λ) is the m-by-m Jordan block with
eigenvalue λ ∈ k.

10



Proposition 6.9. There is an isomorphism between the category of representations of Q and modkQ,
where (Mi,Mα)i,α corresponds to M =

∏
i∈Q0

Mi with kQ-action given by (linear combinations of com-
positions of) Mα’s, and isomorphism classes of Q-representations correspond to isomorphism classes
of kQ-modules.

11



7 Idempotents

Recall that an idempotent of an algebra A is an element x with x2 = x.

The right A-modules of the form eA and D(Ae) for an idempotent e ∈ A are of central importance in
representation theory and in homological algebra.

Lemma 7.1. The the following hold for any idempotent e ∈ A.

(1) (Yoneda’s lemma) HomA(eA,M) ∼= Me as a k-vector space for all M ∈ modA.

(2) There is an isomorphism of rings EndA(eA) ∼= eAe.

Proof For (1), check that HomA(eA,M) 3 f 7→ f(e) = f(1)e ∈ Me defines a k-linear map with
inverse me 7→ (ea 7→ mea). (2) follows from (1) by putting M = eA with straightforward check of
correspondence of multiplication on both sides.

Remark 7.2. Under the isomorphism A ∼= EndA(A), an idempotent e of A corresponds to the ‘project
to direct summand P = eA endomorphism’, i.e. A� P ↪→ A. This is compatible with Yoneda lemma
(think about this!) which says that there is a vector space isomorphism fAe ∼= HomA(eA, fA) for any
idempotents e, f .

Lemma 7.3. For idempotents e, f ∈ A, we have eA ∼= fA as right A-module if and only if f = ueu−1

for some unit u ∈ A×.

Given an idempotent e = e2 ∈ A in an algebra A, then eA and (1 − e)A are both right ideal of A.
Since e(1 − e) = 0 = (1 − e)e, we have eA ∩ (1 − e)A = 0, which means that A ∼= eA ⊕ (1 − e)A
as right A-module. In particular, in the setting of the above lemma, we have that eA ∼= fA and
(1− e)A ∼= (1− f)A by Krull-Schmidt property.

Definition 7.4. Two idempotents e, f are orthogonal if ef = 0 = fe. An idempotent e is primitive
if e 6= f + f ′ for some orthogonal (pair of) idempotents f, f ′.

It follows from the definition of primitivity that

eA and D(Ae) are indecomposable A-modules for a primitive idempotent e.

Example 7.5. The trivial paths ex for x ∈ Q0 is (by design) a primitive idempotent of the path
algebra kQ, and 1 =

∑
x∈Q0

ex is an orthgonal decomposition of primitive idempotents. Hence, we
have a decomposition

kQ ∼=
⊕
x∈Q0

exkQ =
⊕
x∈Q0

Px and D(kQ) ∼=
⊕
x∈Q0

D(kQex) ∼=
⊕
x∈Q0

Ix.
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8 Composition series, Jordan-Hölder Theorem

Definition 8.1. Let A be a k-algebra and M ∈ Amod. A composition series of M is a finite chain
of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂M` = M

such that Mi/Mi−1 is simple for all 1 ≤ i ≤ `. The number ` here is the length of the composition
series. The module Mi/Mi−1 for each 1 ≤ i ≤ ` are called the composition factors of the series.

Theorem 8.2 (Jordan-Hölder Theorem). Any two composition series have the same length and
the multi-sets of their composition factors (up to isomorphisms) are the same.

We omit the proof. The strategy is basically by induction on the length of series.

Remark 8.3. Jordan-Hölder theorem holds as long as a module, regardless of what kind of algebra,
has a (finite) composition series; this condition is actually equivalent to saying that it is noetherian
and artinian.

Remark 8.4. The Jordan-Hölder theorem may not hold if one relaxes the form of composition factors
from simple modules to something else. There are a few active research themes, including one related
to quasi-hereditary algebras, that are stemmed from this.

Lemma 8.5. Let M be a finite-dimensional right A-module. Then M has a composition series.

Proof Induction on dimkM , at each step choose a maximal submodule (i.e. a submodule whose
quotient is simple).

Example 8.6. Let A = k~An. Then the module Ui,j has a composition series

0 ⊂ Uj,j ⊂ Uj−1,j ⊂ · · · ⊂ Ui+1,j ⊂ Ui,j

with composition factors Sk = Uk,j/Uk+1,j for i ≤ k ≤ j. Note that this composition series is unique
- such kind of modules are called uniserial.

Lemma 8.7. If M ∈ modA and N ⊂M is a submodule, then there is a composition series (Mi)0≤i≤`
so that N = Mk for some 0 ≤ k ≤ `.

Proof N has a composition series, say, of length k, so we take that as the first k terms of the required
composition series of M . On the other hand, M/N also has a composition series, and since every
submodule of M/N is of the form L/N (for a submodule U of M/N , take L := {m ∈M | m+N ∈ U};
it is routine to check that this is an inverse operation as quotienting N on the submodules of M that
contains N), a composition series of M/N is of the form (Li/N)0≤i≤r. Now take Mk+i = Li.

Proposition 8.8. Suppose A is a k-algebra such that AA has a composition series. Then there are
only finitely many simple A-modules up to isomorphisms, and they all appear in the form A/I for
some A-submodule I of A.

Note that while this does not require A to be finite-dimensional, it requires AA to be of finite length
(equivalently, noetherian and artinian).

Proof The final clause of the claim is just restating Lemma 3.8: any simple S is given byA/AnnA(m)
for any non-zero m ∈ S. Now fix such an S and I := AnnA(m). Since A has a composition series,
I also have one by Lemma 8.7 so that the series ends with I ⊂ A. Since this is possible for any
simple S, it follows from Jordan-Hölder theorem that all simple modules other than S must appear
as composition factors of I.

Since composition series is a finite chain, there must be finitely many composition factors - hence, the
simple modules of A must be finite.

13



9 Semisimplicity and Artin-Wedderburn theorem

In order to obtain all (isomorphism classes of) simple A-modules - or equivalently maximal right A
ideal (i.e. maximal submodules of AA) - for a finite-dimensional k-algebra A, we will use the following.

Definition 9.1. Let A be a k-algebra and M ∈ modA.

(1) The (Jacobson) radical rad(A) (sometimes also written as J(A)) of A is the intersection of all
maximal right ideals (i.e. maximal A-submodules) of A.

(2) A is semisimple if rad(A) = 0.

Example 9.2. For A = kQ of a finite quiver Q and x ∈ Q0. The projective Px at x contains a
submodule spanned by all paths starting from x with length at least 1. This is a maximal submodule
of Px since the cokernel of the natural embedding to Px is a one-dimensional module spanned by the
coset of ex – in particular, this simple module is isomorphic to Sx. Thus, we have rad(A) = kQ≥1 the
submodule of AA spanned by all paths of length at least 1.

Proposition 9.3. Suppose AA has a composition series. Then the following holds for the Jacobson
radical rad(A).

• rad(A) is the intersection of finitely many maximal right ideals.

• rad(A) is the intersection of all two-sided ideals AnnA(S) := {a ∈ A | ma = 0∀m ∈ S}, in other
words

rad(A) = {a ∈ A | Sa = 0 for all simple S}.

• rad(A) is a two-sided ideal of A.

• rad(A)` = 0 for ` at most the length of AA.

• (A/ rad(A))A/ rad(A) is a semisimple (as a module).

• AA is a semisimple (as a module) if, and only if, rad(A) = 0 (i.e. A semisimple as an algebra).

Proof omitted. We note that all of these claims do make use of the Jordan-Hölder theorem.

Example 9.4. (1) Direct product of two semisimple algebras is semisimple.

(2) A = Matn(D) with D a division k-algebra is a semisimple k-algebra. We have decomposition
AA ∼= V ⊕n into n copies of n-dimensional simple module

V = {(vi)1≤i≤n | vi ∈ D ∀i}.

(3) A := k[x]/(xn) is not semisimple for any n ≥ 2 as it has a non-trivial (unique) maximal ideal
rad(A) = (x).

Theorem 9.5 (Artin-Wedderburn theorem). Let A be a finite-dimensional k-algebra and let r be
the number of isoclasses of simple A-modules, say, with representatives S1, . . . , Sr. Let Di := EndA(Si)
be the division k-algebra given by endomorphism of the simple module Si. Then there is an isomorphism
of k-algebras

A/ rad(A) ∼= Matn1(D1)× · · · ×Matnr(Dr).

As before, if we work over algebraically closed field k = k, then all the Di’s are just k.

Proof Let B := A/ rad(A). By definition of rad(A), the A-module A/ rad(A) is semisimple, and
any A-submodule M of A/ rad(A) satisfies M rad(A) = 0. Hence, M = M/M rad(A) is naturally a
B-module and EndB(M) ∼= EndA(M) (even as algebras!).

14



By Lemma 7.1, we have B ∼= EndB(B). Since B is semisimple, the BB is a semisimple B-module,
say, B ∼= S⊕n1

1 ⊕ · · · ⊕ S⊕nrr where Si are the (representatives of the) isomorphism classes of simple
B-modules. Hence, it follows from Schur’s lemma and its consequence (Lemma 3.10 and Lemma 3.13)
that

B ∼= EndB(B) ∼= Matn1(D1)× · · · ×Matnr(Dr),

where Di := EndB(Si) for all 1 ≤ i ≤ r. This completes the proof.

Corollary 9.6. For any finite-dimensional k-algebra A, let Sim(A) be the set of isomorphism-class
representatives of simple A-modules. Then there is a one-to-one correspondence

Sim(A) oo
1:1 // Sim(A/ rad(A))

S � // S := S/S rad(A)

(= S as underlying vector space)

resT T�oo

where resT is the restriction of T along A� A/ rad(A).

Example 9.7. Suppose that Q is finite acyclic, i.e. kQ is finite-dimensional. Since rad(kQ) is spanned
by all non-trivial paths, kQ/ rad(kQ) is just the semisimple kQ-module

⊕
i∈Q0

Si. In particular, the
Artin-Wedderburn decomposition reads

kQ ∼= k× · · · × k

with one copy of k for each i ∈ Q0 on the right-hand side. Moreover, every simple kQ-module is
isomorphic to one of Si for i ∈ Q0.

Exercise 9.8. Show that when Q is the Jordan quiver, then kQ has infinitely many simple modules
and that rad(kQ) = 0.
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10 Radical and socle

Definition 10.1. The radical of an A-module M is rad(M) := M rad(A). In general, take rad0(M) :=
M and denote by radk+1(M) := rad(radk(M)) = radk(M) rad(A) for all k ≥ 0.

Successively taking the radical yields a series:

0 ⊂ rad`(M) ⊂ · · · ⊂ rad(M) ⊂M

This is called the radical series. The quotient M/ rad(M) is called the top of M , and is denoted by
top(M).

Proposition 10.2. The following hold for M ∈ modA.

(1) rad(M) is the intersection of all maximal submodules of M .

(2) top(M) := M/ rad(M) is the maximal semisimple quotient of M .

(3) rad(M ⊕N) = rad(M)⊕ rad(N).

(4) If f : M → N is a surjective A-module homomorphism, then f(radM) = radN .

(5) (Nakayama’s Lemma, special case) For a submodule N ⊂M , (N + rad(M) = M)⇒ N = M .

Proof omitted; this follows the same kind of arguments as in the case for rad(A).

Example 10.3. Let A be a finite-dimensional algebra. Suppose that e is a primitive idempotent, i.e.
P := eA is an indecomposable A-module. Since A = P ⊕Q (by taking Q := (1− e)A), we have

rad(P )⊕ rad(Q) = rad(P ⊕Q) = rad(A).

Since P and Q has no common (non-trivial) submodule, we get that

A/ rad(A) =
P ⊕Q

rad(P ⊕Q)
= P/ rad(P )⊕ Q

rad(Q)
.

Thus, it follows from Corollary 9.6 that P/ rad(P ) is a simple module and that every simple A-module
arises this way. In other words, let PIM(A) be the set of isoclass (=isomorphism class) representatives
of indecomposable direct summands of A, then we have a correspondence

PIM(A) oo
1:1 // Sim(A)

P � // P/ rad(P )

(10.1)

For a simple A-module S, denote by PS the corresponding direct summand P of A under the corre-
spondence (10.1).

There is a construction dual to rad(M).

Definition 10.4. The socle of an A-module M is soc(M), which is defined as the maximal semisimple
submodule of M . More generally, take soc0(M) = 0 and for k ≥ 0, let sock+1(M) to be the submodule
of M generated by the lift of soc(M/ sock(M)) ⊂M/ sock(M). This yields a series

0 ⊂ soc(M) ⊂ soc2(M) ⊂ · · · ⊂ soc`(M) = M

called the socle series of M .

Example 10.5. Consider a path algebra kQ of a finite acyclic (for simplicity) quiver Q, and x ∈ Q0.
The indecomposable injective Ix = D(kQex) has a simple socle isomorphic to Sx. Essentially this can
be seen by a dual argument in showing top(Px) ∼= Sx. More generally, analogous to Example 10.3, for
a finite-dimensional algebra A, every simple A-module appears as soc(I) for an indecomposable direct
summand of D(A).
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Lemma 10.6. For M ∈ modA, the socle series and radical series has the same length, and this length
is called the Loewy length of M , and is denoted by LL(M).

Proof Let rM (resp. sM ) denotes the length of the radical (resp. socle) series of M . First, we show
that sM ≤ rM by induction on sM . This is clearly fine if sM = 0.

Suppose that sM > 0. By definition we have radr−1(M) a semisimple submodule of M , and so
radr−1(M) ⊂ soc(M). This means that there is a surjective homomorphism M/ radr−1(M) �
M/ soc(M), and so rM/ radr−1(M) ≥ rM/ socM (EXERCISE!). In particular, we have

rM = rM/ radr−1(M) + 1 ≥ rM/ socM + 1.

Since sM/ socM = sM − 1, it follows from the induction hypothesis that sM/ socM ≤ rM/ socM , and
hence

sM = sM/ socM + 1 ≤ rM/ socM + 1 ≤ rM ,

as required.

One can show that rM ≤ sM dually.

Note that the semisimple subquotients in (between the layers of) the socle series and the radical series
of a module may not coincide.

Example 10.7. Let Q be the quiver 1
α←− 2

β−→ 3
γ−→ 4 and consider the projective P2 which has the

form

k 1←− k 1−→ k 1−→ k

Then we have radical series

0 ⊂ S4 = kβγ
S1⊕S3⊂ rad(P2) = kα+ kβ + kβγ

S2⊂ P2

and socle series

0 ⊂ S2 ⊕ S4 = kα+ kβγ
S3⊂ rad(P2) ⊂ P2.
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11 Example: Topological data analysis

Topological data analysis concerns the “rough shape of data”. Here, we regard data as just a finite
discrete set X in Rd (with usual Euclidean metric if you like). X itself is not particular interesting
space (in terms of geometry or topology) for further analysis; yet, we can often see “pattern” – whether
they look more or less randomly distributed, whether they are distributed in the space in a way that
avoid certain areas, etc.

A more well-known mathematical approach to addressing this issue is statistics, where we try to see
if the pattern tells us correlation between different parameters. For topological data analysis (TDA)
we want to just tell if the data form some ‘shapes with holes’ (this is where ‘topology’ comes in). The
idea is to replace each data point x ∈ X by a ball Bt(x) of very small radius t, slowly increase the
radius and observe how the topology (e.g. by looking at topological invariant such as the ‘genus’) of
the space Xt :=

⋃
x∈X Bt(x) changes.

Note that if s ≤ t, then we have a subspace Xs ⊂ Xt. Moreover, in practice, it makes sense to sample
t to a finite sequence t1 < t2 < · · · < tn and take Xi := Xti . Since we only concern topology of Xt,
we can replace Xt by a simplicial complex 4t where 0-cells (points) are x, and {x1, . . . , xr} form an
r-cells if Bt(x1)∩· · ·∩Bt(xr) 6= ∅. Having a simplicial complex means that we can take (e.g. the p-th)
homology group Hp(Xt) = Hp(4t). The fact that we have Xti ⊂ Xti+1 means that we have a chain

Hp(X1)→ Hp(X2)→ · · · → Hp(Xn).

If we linearise these abelian groups to k-vector spaces, then we get a chain of vector spaces and linear
transformations – this is nothing but a representation of the ~An-quiver

1→ 2→ · · · → n.

In TDA, such a chain is called persistence module (of 1 parameter / finite linear poset). Understanding
the indecomposable decomposition of a persistence module is an important aspect in TDA, this can
even be used to characterise the nature of the data set (e.g. one may record some data from various
metals, and the topological information can be used to distinguish each metal just from the data set).

An interval module M[a,b] for 1 ≤ a ≤ b ≤ n is the ~An-quiver representation given by

0→ · · · → 0→ k id−→ k id−→ · · · id−→ k→ 0→ · · · 0

where the non-zero space starts at a and ends at b. This is clearly an indecomposable representation.
In fact, forms all indecomposable representation – known by Gabriel in the 70s (this is one special
case of the Gabriel’s theorem). The following is then just a consequence of Krull-Schmidt theorem,
but turns out to be fundamental in TDA.

Proposition 11.1. Every persistence module can be decomposed uniquely to a direct sum of interval
module.

The above is what people call ‘single parameter’, or (finite) ‘linear poset’, case. There are other
possible forms:

(1) Multi-parameter case: the quiver ~An is replaced by the ‘commutative cube’, i.e. the bound
quiver ~An1 × · · · × ~Anr with relation αβ − βα for arrows α, β going in different directions. In
other words, a persistence module in this case is the same as an A-module, where A =

⊗r
i=1 k~A.

(2) Poset case: the quiver ~An is replace by the bound quiver (Q, I) whose underlying quiver Q is
the Hasse quiver of the poset P , and I includes all commutation

x
α−→ y

β−→ z − x α′−→ w
β′−→ z
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whenever x ≥ y ≥ z and x ≥ w ≥ z. In other words, a persistence module in this case isthe
same as a module over the incidence algebra of the poset P .

In these general cases, one can still define interval modules, but it is no longer true that every A-module
can be decomposed into interval modules. Much of the recent algebraic and homological aspect of
TDA concerns how to overcome such a problem.

For other aspects and more in-depth study of applying quiver representation to TDA, see, for exmam-
ple, book of Steve Oudot.
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12 Example: Linear matrix pencil

A linear matrix pencil is a matrix A + λB with A,B ∈ Mm×n(k) and λ being an indeterminant, i.e.
A + λB ∈ Mm×n(k[k]). For simplicity, we just say ‘matrix pencil’ and drop the adjective ‘linear’.
Matrix pencil is used in the study of the so-called generalised eigenvalue problem, and has applications
to various applied mathematics like control theory, differential algebraic equations, numerical linear
algebra, etc.

Two matrix pencils A + λB and A′ + λB′ are strictly equivalent if there are invertible matrices
P ∈ Mm(k), Q ∈ Mn(k) such that A′ + λB′ = P (A + λB)Q. This is equivalent to A′ = PAQ and
B′ = PBQ.

For simplicity, let us specialise k to an algebraically closed field; this means that we can use Jordan
canonical form Jm(α) ∈Mm(k).

Let Hm be the m × (m + 1)-matrix given by removing the last row of Jm(0), and (Im|0) be the
m× (m+ 1)-matrix given by adding a column of zero to the identity matrix Im. Define

Lm := λ(Im|0) +Hm =


λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 λ 1

 ∈Mm×(m+1)(k[λ]).

Similar to the Smith/Jordan canonical form, each matrix pencil of is equivalent to one in Kronecker
canonical form.

Theorem 12.1. Every matrix pencil is strictly equivalent to a block-diagonal matrix, where each block
is of one of the following form:

(1) Lm or Ltr
m for some m ≥ 1.

(2) Im + λJm(0) or Jm(α) + λIm, for some m ≥ 1 and α ∈ k.

One way to prove this theorem is to observe the following.

Proposition 12.2. For any m,n ∈ Z≥0, there is a one-to-one correspondence between the strictly
equivalent classes of m × n-matrix pencil and the isomorphism classes of representations over the
Kronecker quiver K2 := (1 ////2) with dimension vector (n,m).

Proof Exercise.

Under this correspondence, the Kronecker canonical form (the blocks appearing in the block-diagonal
form) corresponds to indecomposable representations of the Kronecker quiver. In quiver representation
theory, such classification can be done using a Kac’s theorem.

Corollary 12.3. Every indecomposable kK2-modules is isomorphic to one of the following.

(1) Preinjective modules, which correspond to Lm for m ≥ 1.

(2) Preprojective modules, which correspond to Ltr
m for m ≥ 1.

(3) Regular modules Rm(x) for x ∈ P1k and m ≥ 1, where{
Rm(α) corresponds to Jm(α) + λIm if α = [x : 1];

Rm(∞) corresponds to Im + λJm(0) if α = [1 : 0] =∞.
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With this, various problems about linear matrix pencil can be transformed to problems about repre-
sentations of the Kronecker quiver. There are also ‘higher variation’ of matrix pencils that correspond
to the n-Kronecker quiver where there are n ≥ 2 arrows between the 2 vertices (instead of just n = 2).
Examples problem includes the “matrix subpencil” problem, which are studied by Claus Ringel, Han
Yang, Ştefan Şuteu-Szöllősi.

Exercise 12.4. Write down the indecomposable kK2-modules as representations.
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13 Bounded path algebra

For general quiver, we loses finite-dimensionality, and so many nice things we explained do not hold
any more. To retain finite-dimensionality, we need to consider nice quotients of path algebras.

Definition 13.1. An ideal I C kQ is admissible if (kQ1)
k ⊂ I ⊂ (kQ1)

2 for some k ≥ 2, i.e. I
is generated by linear combinations of paths of finite length at least 2. The pair (Q, I) is sometimes
called bounded quiver. A bounded path algebra or quiver algebra (with relations) is an algebra of the
form kQ/I for some quiver Q and admissible ideal I.

Remark 13.2. Admissiblity ensures there is no redundant arrows (which appears if there is a relation
like, for example, α− βγ ∈ I for some α 6= β, γ ∈ Q1) and there is enough vertices (trivial paths may
not be primitive if there is a loop x at a vertex with relation x2 − x ∈ I).

Lemma 13.3. A bounded path algebra is finite-dimensional.

Proof There exists a surjective algebra homomorphism kQ/(kQ1)
k � kQ/I; the former is finite-

dimensional.

Example 13.4. Let Q be the Jordan quiver with unique arrow α. Let I be the ideal of kQ generated
by αk for some k ≥ 2. Then I is an admissible ideal and kQ/I ∼= k[x]/(xk) is a truncated polynomial
ring.

Definition 13.5. A representation M of a bounded quiver (Q, I) is a representation M = (Mi,Mα)i,α
of Q such that Ma = 0 for all a ∈ I; here Ma :=

∑
p λpMp for a =

∑
p λpp written as a linear

combinations of paths p.

A homomorphism f : M → N of representations of (Q, I) is a collection of linear maps fi : Mi → Ni

that intertwines arrows’ action.

As before, representations are really just synonyms of modules.

Lemma 13.6. A representation of a bounded quiver (Q, I) is equivalent to a kQ/I-module, and
homomorphisms between representations are equivalent to those between kQ/I-modules.
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