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Convention

Throughout the course, the symbols K,k,F will always be a field. Unless otherwise stated, we assume
(for simplicity) that

• all groups are finite;

• all vector spaces are finite-dimensional.

We compose maps from right to left.

We usually denote the identity element of a group G by 1 or 1G or idG.

1 Group action

Definition 1.1. Let G be a group and X a set. We say that G acts on X, or X is a G-set, if there
is a map ∗ : G×X → X, with gx := g ∗ x := ∗(g, x) for all g ∈ G and x ∈ X, such that

1x = x, and g(hx) = (gh)x.

Thinking about this a little bit more, one can see that the action of G on X simply just permutes the
elements of X – i.e. G is just some (sub)group of symmetries on X.

When X = V is a vector-space, if we ask for G to only acts by permuting elements, then it could very
well destroy the linearity – the best thing about linear algebra – and we lose all the toolkit from linear
algebra. The remedy is to “linearise” the definition of action.

Definition 1.2. For a vector space V , we say that G acts linearly on V if G acts on V and

g(λu+ µv) = λg(u) + µg(v)

for all g ∈ G, all λ, µ ∈ K, and all u, v ∈ V .

Often in practice we just write
Gy V

to denote the existence of linear G-action on V .

2 Linear representations

A linear g-action on V is just a linear transformation for any g ∈ G. So we can repackage the notion
of linear G-action using the following.
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Recall that the general linear group of a vector space V over K is the group of all invertible (K-)linear
transformation from V to itself.

GL(V ) := {φ : V → V | φ invertible linear transformation}.

The group multiplication is just composition of linear transformations, and the identity element is
just the identity map id : V → V .

More generally, one can consider GL(V ) for some free R-module V of finite rank for some nice ring
R – by nice, usually this would be at least an integral domain. We may look at some examples in the
case when R = Z when we focus on symmetric group representations.

Now we can reformulate the notion of linear G-action as follows.

Definition 2.1. Let G be any (not necessarily finite) group. A finite-dimensional (resp. n-dimensional)
K-linear representation of G is a group homomorphism

ρ : G→ GL(V ), g 7→ ρg,

for some finite-dimensional (resp. n-dimensional) K-vector space V . The linear transformation ρg
here is called the action of g on V .

Usually, when the underlying field (or ring) is understood, we will drop the adjective ‘K-linear’ for
representations.

Exercise 2.2. Check that representation defines a linear G-action in the sense of Definition 1.2.

While we assumed V is a vector space over a field K here, one can also consider more general setting
of “R-linear representation” when V is an R-lattice (=free R-module of finite rank).

Example 2.3. (1) The trivial representation of G is the 1-dimensional representation

trivG : G→ GL(K), g 7→ id .

(2) G = Sn the symmetric group of rank n. The sign representation of Sn is the 1-dimensional
representation

sgn : G→ GL(K), σ 7→ sgn(σ),

where sgn(σ) ∈ {±1} is the parity (or sign) of the permutation σ.

(3) Let X be a finite G-set (for any finite group G). Denote by KX the K-vector space with basis
given by X. Then

πX : G→ GL(KX), g 7→ (x 7→ gx)x∈X

defines K-linear G-representation. Any G-representation of such a form is called a permutation
representation.

Exercise 2.4. Suppose ρ : G→ GL(V ) is a representation. Show that det ρ is also a representation.

Exercise 2.5. Consider the additive group of integers G = (Z,+). Let V be a fixed finite-dimensional
C-vector space. Show that every linear transformation φ ∈ GL(V ) defines a unique (not distinguished
under isomorphism) C-linear G-representation.

Recall that for a ring R with identity 1, under addition the element 1 either has infinite or prime, say
p, order. The characteristic of R, denoted by charR, is 0 in the former case, or p in the latter.

In Example 2.3 (2), we can see that when charK = 2, then sign representation is the same as trivial
representation.

In general, changing characteristic drastically change the kind of representations that can appear.
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• Ordinary representation theory studies K-linear representations over a field K with charK = 0.

• Modular representation theory studies K-linear representations over a field K with charK =
p > 0 and p|#G.

• Integral representation theory studies O-linear representations over a (nice – such as discrete
valuation ring) integral ring O (but sometimes including Z) with charO = 0.

The case of K-linear representations with positive characteristic that does not divide the order of
group is sometimes called “representations over good characteristics” but can also be regarded as a
‘trivial’ extension of ordinary representation theory – characteristic 0 and good characteristic cases
are somewhat the same.

Most of this course will be about ordinary representation theory. We may touch on some integral and
modular representation for the symmetric group later in the course.

3 Matrix representations

When V is n-dimensional K-vector space, then GL(V ) is isomorphic to

GLn(K) := {invertible n× n-matrices with entries in K}.

This isomorphism of course depends on a basis we pick for V .

Definition 3.1. An n-dimensional matrix representation of a group G is a group homomorphism

R : G→ GLn(K), g 7→ Rg.

We say that the matrix Rg represents the action of g.

It is clear that given an n-dimensional matrix representation, one obtains an n-dimensional K-linear
representation (with V = Kn), and vice versa (by choosing a basis for V and passes through GL(V ) ∼=
GLn(K)).

Example 3.2. Consider G = C3 = 〈x | x3 = 1〉 the cyclic group of order 3. Let us try to see what
matrix representations of G look like in the case when K = C.

Suppose that Rx ∈ GLn(C) is diagonal. Since R3
x = Rx3 = R1 = id, the diagonal entries are in

{ωk := exp(2πik/3) | 0 ≤ k < 3}, and we can write Rx = diag(ωk1 , . . . , ωkn) with any ki ∈ {0, 1, 2}
for all i = 1, . . . , n. Note that, in this case, R2

x will also be a diagonal matrix diag(ω2k1 , . . . , ω2kn).

On the other hand, if Rx is not a diagonal matrix, since Rx is invertible and we work over C, we can
still find P ∈ GLn(C) so that PRxP

−1 is diagonal. In other words, we have a commutative diagram

Cn

diag(ωik1 ,...,ωikn )
��

P

∼= // Cn

Ri
x
��

Cn
P

∼= // Cn,

i.e. the two paths from top left to bottom right resulting the same map. This amounts to say that, up
to a change of basis of Cn, the non-diagonal case is “essentially the same” as the diagonal one.

4 Homomorphism

In mathematics, the word for “essentially the same” is (usually) isomorphism; for this, we need the
weaker notion of homomorphism first.
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Definition 4.1. Let ρ : G → GL(V ) and θ : G → GL(W ) be two K-linear representations of G. A
homomorphism from V to W is a K-linear transformation such that the following diagram commutes

V
f //

ρg
��

W

θg
��

V
f //W

for all g ∈ G, i.e. fρg = θgf for all g ∈ G.

An isomorphism from V to W is a homomorphism that is invertible, i.e. ∃g s.t. gf = idV and
fg = idW .

Write HomKG(V,W ) for the space of all homomorphisms from V to W .

Remark 4.2. Older text also calls a homomorphism (sometimes, only for isomorphism) f : V → W
an intertwiner, or that f intertwines ρ, θ; we will try to avoid using this and stick to homomorphism.
Older text may say that V,W are equivalent if there is an isomorphism between them. We will drop
this redundant language and just say V and W are isomorphic.

Example 4.3. Let us go back to the case when G = C3 and take n = 1. We have three representations

R(i) with i = 1, 2, 3 so that R
(i)
x = ωi. An isomorphism on C is just a non-zero scalar multiplication

λ · −. As λR
(i)
x λ−1 = R

(i)
x = ωi, we have R(i) � R(j) whenever i 6= j. In fact, by the same reason, we

can see that
HomCG(R(i), R(j)) = {0}

for distinct i, j.

Exercise 4.4. Verify that (a) HomKG(V,W ) is a K-vector space, and (b) the composition of homo-
morphisms is also a homomorphism of representations.

Since HomKG(V,W ) is a K-vector space, we can just write HomCG(R(i), R(j)) = 0 in the above
example, instead of the more bulky set notation {0}.

Exercise 4.5. Consider G = C3 with generator g acting on X = {0, 1, 2} by gi = i + 1 mod 3.
Recall from Example 3.2 that 3-dimensional representation of C3 is isomorphic to a (matrix) repre-

sentation R(k1,k2,k3) : G → GL3(C) with R
(k1,k2,k3)
g = diag(ωk1 , ωk2 , ωk3). Find (k1, k2, k3) so that

CX ∼= R(k1,k2,k3).

Exercise 4.6. Let X,Y be two G-sets. Determine the condition on a map f : X → Y so that f
induces a homomorphism of permutation representations from πX to πY .

5 Group algebra

Definition 5.1. Let KG be the K-vector space with basis G, i.e. x ∈ KG⇔x =
∑

g∈G λgg with
λg ∈ K for all g ∈ G.

Define a map

KG×KG→ KG, (
∑
g∈G

λgg,
∑
h∈G

µhh) 7→
∑
g,h∈G

λgµh(gh).

It is routine to check that this defines a ring structure on KG with identity given by that of G. We
call this ring the group algebra of G over K.

Exercise. (1) Show that there is an injective ring homomorphism K → Z(KG) := {x ∈ KG | xy =
yx ∀y ∈ KG}. In other words, the group algebra KG is a K-algebra.
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(2) Let R be a commutative ring and A be another (possibility non-commutative) ring. Show that if
there is an injective ring homomorphism R→ Z(A), then any A-module is also an R-module.

Lemma 5.2. ρ : G → GL(V ) is a (finite-dimensional) K-linear representation of G if, and only if,
V has the structure of a (finite-dimensional) left KG-module.

Proof ⇒: For x =
∑

g λgg ∈ KG, v ∈ V . It is routine to check that x · v :=
∑

g λgρg(v) defines a
left KG-module structure.

⇐: From the previous exercise, we checked that there is an injective ring homomorphism K ↪→ Z(KG).
Hence, we have

(λg)(v) = g(λv)

for all g ∈ G,λ ∈ K, v ∈ V . By the axiom of module, V is an abelian group, and so there 0 ∈ V and
also well-defined addition operation. Taking g = 1 in the above equation, we get that λv ∈ V for all
λ ∈ K. Hence, V is a K-vector space.

Now for g ∈ G, define a map ρg : V → V given by v 7→ gv. We then have

g(λu+ µv) = (λg)(u) + (µg)(v) = λρg(u) + µρg(v),

and so ρg is a linear transformation. Since g−1(g(v)) = (g−1g)v = 1G · v = v, we have ρg−1ρg = id,
and so ρg ∈ GL(V ).

Finally, the axiom of module says that (gh)(v) = g(hv), which means that ρgh = ρgρh. Thus, g 7→ ρg
is a group homomorphism.

Remark 5.3. One may find in older textbooks that use terminologies like ‘the KG-module V is afforded
by ρ’ in the setting of this lemma. We will just used ρ is the representation associated/corresponding
to V , or vice versa, to keep the language simple.

Example 5.4. KG is clearly a KG-module where the (left) action is given by (left) multiplication.
Thus, we have a G-representation ρ : G → GL(KG) with ρg(

∑
h∈G λhh) :=

∑
h∈G λhgh. This repre-

sentation is usually called regular representation of G.

Exercise 5.5. Let V be the 1-dimensional subspace of KG spanned by
∑

g∈G g. Show that V is a
KG-module and that trivG ∼= V .

Lemma 5.6. f : V → W is a homomorphism of K-linear G-representations if, and only if, it is a
homomorphism of left KG-modules. Consequently, Ker(f), Im(f), W/ Im(f) are naturally K-linear
G-representations.

Proof First part: Exercise.

For the second part, just recall that the kernel, image, and quotient of image of any homomorphism
of modules are also modules.

Remark. In the language of category theory, Lemma 5.2 and 5.6 together says that the category of
finite-dimensional K-linear G-representations (where morphisms are homomorphisms) and the cate-
gory of finitely generated left KG-modules are isomorphic (note that this is stronger than just equiv-
alence of categories).

Exercise 5.7. Verify the first part of Lemma 5.6.

Exercise 5.8. Fix any n ≥ 2.

(i) Find a generator v such that sgn = Kv. (Hint: Modify the generator
∑

g∈G g of the trivial
representation.)

(ii) Show that HomKSn(triv, sgn) = 0 = HomSn(sgn, triv) when charK 6= 2; otherwise, triv ∼= sgn.
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6 Subrepresentation, indecomposable, irreducible

Definition 6.1. Let ρ : G → GL(V ) be a K-linear G-representation. A subpace W of V is G-
invariant if ρg(W ) ⊂W . In this case we call the homomorphism θ : G→ GL(W ) given by θg := ρg|W
a subrepresentation of ρ. It is non-trivial, or proper, if W is non-zero and W 6= V .

We say that ρ is irreducible (or that V is simple) if it admits no proper subrepresentation.

We will use both the terminologies irreducible and simple for representations and modules since they
are ‘the same’ notion.

Exercise 6.2. Let f : V → W be a homomorphism of representations from ρ : G → GL(V ) to
φ : G→ GL(W ). Show the following directly without using the language of KG-modules.

• Ker(f) is a G-invariant subspace of V .

• Im(f) is a G-invariant subspace of W .

Example 6.3. (1) Any 1-dimensional representation is irreducible.

(2) trivG is a 1-dimensional irreducible subrepresentation of the regular representation; see Exercise
5.5.

(3) Consider G = D6 = 〈a, b | b2 = 1 = a3, abab = 1〉 and K = C. Consider a 2-dimensional
representation ρ : G → GL(V ) so that under the basis {u, v} we have its matrix representation
form given by

a 7→
(
ω 0
0 ω−1

)
and b 7→

(
0 1
1 0

)
.

If there is a non-trivial subrepresentation, then it will be 1-dimensional spanned by w := λu+µv
for some scalar λ, µ ∈ K. Being G-invariant means that aw, bw ∈ Kw. Writing the action out:{

bw = b(λu+ µv) = µu+ λv,

aw = a(λu+ µv) = ωλu+ ω−1νv

Looking at b-action we have some c ∈ K so that cλ = µ and cµ = λ, which yields λ = ±µ.

Looking at a-action we have aw = ω−1w which means that µω−2 = µ and so µ = 0. (If we take
aw = ωw then we get λ = 0.) Hence, combining with λ = ±µ, we have λ = 0. Thus, w = 0.
This shows that there is no non-trivial G-invariant subspace and so R is irreducible.

If ρ : G→ GL(V ) is a G-representation has a subrepresentation with corresponding module W . Then
natural inclusion map W ↪→ V naturally defines an injective homomorphism of KG-module. Hence,
we know already from module theory that there is a KG-module structure on the quotient space V/W .

Definition 6.4. If φ is a subrepresentation of ρ = ρV , with corresponding KG-modules W ⊂ V
respectively, then the quotient representation is the induced homomorphism ρV/W : G → GL(V/W ),
i.e. ρV/W (g)(v +W ) := ρg(v) +W .

Exercise 6.5. Check that quotient representation is indeed a representation of G directly (without
using module theory).

Lemma 6.6 (First isomorphism theorem). Let f : V → W be a homomorphism of represen-
tations V = (V, ρ),W = (W,φ). Then the quotient representation V/Ker(f) is isomorphic to the
subrepresentation Im(f) of W .

Proof Just use first isomorphism theorem for KG-modules.
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Looking back at Example 6.3, one can see that looking at matrix really helps to determine subrepre-
sentations. Formulating this more precisely we have the following simple observation.

Lemma 6.7. Suppose W is a G-invariant subspace of V for a G-representation ρ : G → GL(V ). If
{w1, . . . , wm} is a basis of W , then we can extends it to a basis B = {w1, . . . , wm, vm+1, . . . , vn} of V
so that, for every g ∈ G, the matrix form Rg of ρg with respect to B is lower block-triangular matrix

Rg =

(
∗ 0
∗ Rg|W

)
. (6.1)

For ordinary vector space, having a subspace U , we can immediately get V = U ⊕V/U , i.e. there is a
complement W of U in V such that W ∼= V/W . However, this is not true for G-representations (and
KG-modules, and also modules over a ring in general) in general.

Definition 6.8. A representation ρ : G→ GL(V ) is decomposable if there are non-trivial G-invariant
subspaces (=subrepresentations) U,W ⊂ V such that V = U ⊕W (i.e. V = U + W and U ∩W = 0
as vector spaces). In this case, we can write ρ = ρ|U ⊕ ρ|W and call U,W the direct summands of V .
If no such pair of G-invariant subspace exists, then we say that ρ is indecomposable.

We can formulate this in terms of matrices like Lemma 6.7.

Lemma 6.9. ρ = ρ|U ⊕ ρ|W if and only if there is a basis BV := {u1, . . . , um, w1, . . . , wk} so that
BU := {u1}1≤i≤m is a basis of U and BW := {wi}1≤i≤k is a basis of W , and the upper block-triangular
matrix Rg in 6.1 has the top-right corner 0 for all g:

RVg =

(
RUg 0

0 RWg

)
.

Here RXg is the matrix form of ρ|X with respect to the basis BX for X ∈ {V,U,W}.

The more compact way to say the right-hand side of this lemma is that ‘we can simultaneously block-
diagonalize ρg for all g’.

Of course, direct sum is not just an operation on subspaces. If we have two representations ρ : G →
GL(V ), φ : G→ GL(W ), then we have a new representation ρ⊕ φ : G→ GL(V ⊕W ) given by

(ρ⊕ φ)g(v + w) := ρg(v) + φg(w)

for any v ∈ V and w ∈W .

Exercise 6.10. If X,Y are two finite G-sets, then we have a new G-set Z := X t Y given by the
disjoint union. The associated permutation representation πZ is then the direct sum πX ⊕ πY .

Exercise 6.11. Suppose that X is a finite G-set with G-orbit decomposition X = O1t· · ·tOm. Then
we have πX = πO1 ⊕ · · · ⊕ πOm.

Some natural questions once we have the notion of indecomposable and irreducible.

Question. (1) Can we classify all irreducibles?

(2) Can we classify all indecomposables?

(3) How to build indecomposable representations from irreducibles?

(4) When does being indecomposable imply irreducible?

(5) Is there any criteria to guarantee a representation can be decomposed into a direct sum of irre-
ducibles?
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(6) Is decomposition of representation into direct sum of indecomposable direct summand unique?
That is, for a representation V with decompositions U1 ⊕ · · ·Um and W1 ⊕ · · ·Wn with Ui,Wj’s
all indecomposable, do we have m = n and σ ∈ Sn such that Ui ∼= Wσ(i)?

(7) If we ‘divide’ a representation into subquotients of irreducibles, is the resulting multi-set of
irredcuible contribution ‘unique’?

Our plan is to answer Questions (4) first – this is given by the Maschke’s theorem. And use it, and
other tools, to give answers to other questions in the case of ordinary representation theory. We will not
give any account for the case of modular representation theory, but just minor remarks here: Question
(1) has an answer similar to that of the ordinary case. Question (2) is almost always impossible (for
interested audience, search on ‘tame-wild dichotomy of representation-type’). Question (3) can only be
studied by looking at the homological algebra of KG, which is beyond the scope of this text. Question
(4) and (5) does not have any good answer in general. Question (6) and (7) actually have affirmative
answer as they are consequence of classical result in ring and module theory (namely, Krull-Schmidt
theorem and Jordan-Hölder theorem); these are also beyond the scope of this text.

Before we move on, let us have a look when the Question (4) fails.

Example 6.12. Take G = C2 = 〈g | g2 = 1〉.

First consider the case when charK 6= 2 (e.g. K = C). Recall that the trivial representation trivG ∼=
K(1 + g) is a subrepresentation of the regular representation KG. On the other hand, C2 = S2 has a
1-dimensional representation sgn ∼= K(1 − g). Clearly {1 + g, 1 − g} is a basis of KG. This yields a
direct sum decomposition

KG = K(1 + g) +K(1− g) = K(1 + g)⊕K(1− g) ∼= triv⊕ sgn .

Consider G = C2 with charK = 2 (e.g. K = F2). Consider regular representation C2 y KC2. With
respect to the canonical basis {1, g}, the matrix of g-action is given by Rg = ( 0 1

1 0 ). Suppose we can
change the basis via P =

(
a b
c d

)
to diagonalise Rg. Then Rg becomes

1

ad− bc

(
a b
c d

)(
0 1
1 0

)(
d −b
−c a

)
=

1

ad− bc

(
bd− ac a2 − b2
d2 − c2 ac− bd

)
.

Hence, we have b = ±a and d = ±c. Since we are working over characteristic 2, we just get b = a
and d = c. But in this case the above matrix becomes 0. Hence, Rg cannot be diagonalised and so
it is not a direct sum of two 1-dimensional subrepresentations. In particular, it is a 2-dimensional
indecomposable. As mentioned, triv is always a subrepresentation and so we have a 1-dimensional
subrepresentation triv of KG. One can check that the quotient representation is isomorphic to triv as
well, i.e. in pictorial form, we can write:

KG =
triv
triv

.

Exercise 6.13. Complete the argument in the example above by showing that KG/ triv ∼= triv when
charK = 2.

Exercise 6.14. Let A = K[x]/(x2) for any field K. Check that the left A-module AA is indecompos-
able, i.e. A � X ⊕ Y for some non-trivial submodules X,Y of A.
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7 Maschke’s theorem

We introduce the following notion to help talking about the Question (5) above.

Definition 7.1. A representation is completely reducible, or semisimple if it is a direct sum of
irreducible representations.

The main aim of this section is to explain the following foundational result of group representation
theory, which is the answer to Question (5).

Theorem 7.2. (Maschke) Suppose that G is finite and charK is coprime to the order of G. For any
KG-module V , every submodule U of V admits a G-invariant complement, i.e. V = U ⊕ V/U as
KG-module.

Proof Let W0 be any K-vector space complement of U in V , and π : V → V be the K-linear
projection map that projects onto U (i.e. write v ∈ V as u + w for u ∈ U,w ∈ W0, then π(v) = u).
If π is a homomorphism of KG-modules, then W0 is a KG-module and we are done by Lemma 5.6 –
unfortunately this is not true in general. So our goal is to modify π into an idempotent homomorphism.
The clever trick is to consider

p : V → V, v 7→ 1

|G|
∑
h∈G

h−1πh(v).

Let us now show that p is a KG-module homomorphism. Indeed, for any g ∈ G, we have

p(gv) =
1

|G|
∑
h∈G

h−1πh(gv) =
1

|G|
∑
h∈G

g(g−1h−1)π(hg)v = g
1

|G|
∑
h∈G

h−1πhv = gp(v).

The averaging by |G| bit seems very unnecessary so far, but we will see soon that this averaging
operation makes p a projection onto U . Indeed, first, Im(π) = U implies that Im(p) ⊂ U , and so it
remains to show that p(u) = u for all u ∈ U . Indeed, we have

p(u) =
1

|G|
∑
h∈G

h−1π h(u)︸︷︷︸
∈U

=
1

|G|
∑
h∈G

h−1h(u) =
1

|G|
∑
h∈G

u = u.

Now that we have p : V → V a KG-module projection onto U , we get that Ker(p) is a KG-submodule
of V . Hence, we have by first isomorphism theorem that V/Ker(p) ∼= Im(p) = U ⊂ V and so
V = Ker(p)⊕ U .

Corollary 7.3. Every K-linear representation of G semisimple if, and only if, charK - |G|.

Proof ⇐: Consequence of iteratively applying Maschke’s theorem (Theorem 7.2).

⇒: It is enough to show that KG is not semisimple. Suppose on the contrary that KG is semisimple.
Let a :=

∑
g g ∈ KG and V := Ka ⊂ KG. Recall that trivG ∼= V . So KG being semisimple means

that we must have KG ∼= V ⊕W for some left ideal W of KG.

Consider w =
∑

h λhh ∈W . Since W is a left ideal of KG, we have aw ∈W . On the other hand, we
also have

aw = (
∑
g

g)(
∑
h

λhh) =
∑
h

λh(
∑
g

gh) =
∑
h

λha,

which means that aw ∈ V . But V ∩W = 0 and so we must have
∑

h λh = 0, which means that

W ⊂W ′ :=

{∑
g

µgg ∈ KG

∣∣∣∣∣∑
g

µg = 0

}
.
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The space W ′ can be rewritten as the kernel of the map (a.k.a. the augmentation map) given by

ε : KG→ K,
∑
g

µgg 7→
∑
g

µg.

Thus, dimKW
′ = |G| − 1 = dimKW which means that W = W ′. However, we can also see that

ε(a) = 0, and so V ⊂W , a contradiction.

Exercise 7.4. Let G be the subgroup of GLn(C) given by{(
1 0
n 1

)
| n ∈ Z

}
Let V be the 2-dimensional C-vector space. Then we have a natural C-linear representation ρ : G →
GL(V ) given by g 7→ gv (usual applying matrix on vector). Show that V is indecomposable but not
irreducible. In particular, Maschke’s theorem fails for infinite group even for K = C.

8 Schur’s lemma

Definition 8.1. A division ring, or a skew field, is a ring whose non-zero elements are invertible.

Remark 8.2. A field is a division ring where multiplication is commutative.

The following easy yet fundamental lemma describes the relation between simple modules.

Lemma 8.3 (Schur’s lemma). Suppose S, T are simple KG-modules, then

HomKG(S, T ) =

{
a division ring, if S ∼= T ;

0, otherwise.

If, moreover, K is algebraically closed, then

dimK HomKG(S, T ) =

{
1, if S ∼= T ;

0, otherwise.

Proof We prove the first part by showing that any homomorphism f : S → T is either zero or
an isomorphism. Indeed, for f ∈ HomKG(S, T ), we have submodules Ker(f) ⊂ S and Im(f) ⊂ T .
Since S is simple, either Ker(f) = 0 or Ker(f) = S. Similarly, since T is simple, either Im(f) = T or
Im(f) = 0. Thus we have

Ker(f) = 0 Ker(f) = S

Im(f) = T f isom. impossible
Im(f) = 0 impossible f = 0.

Assume now that K is algebraically closed, and that S = T . We claim that any non-zero homomor-
phism f : S → S is given by a scalar multiple λ idS of the identity map. Indeed, K being algebraically
closed implies that f has an eigenvalue λ, and so f − λ idS is a non-invertible linear endomorphism
on S. It follows from the first part that f − λ idS = 0, and so f = λ idS .

For the case S ∼= T , we can fix any pair of isomorphisms f, g : S → T , and so g−1f : S → S is
an endomorphism. By the previous paragraph, we have g−1f = λ idS and so f = λg. Thus any
homomorphism in HomKG(S, T ) is a scalar multiple of any other non-zero homomorphism.

We will now address Question (6). We start with a preliminary lemma.

Lemma 8.4. For any finite-dimensional KG-modules U, V,W , we have

10



(1) HomKG(U ⊕ V,W ) ∼= HomKG(U,W )⊕HomKG(V,W ).

(2) HomKG(U, V ⊕W ) ∼= HomKG(U, V )⊕HomKG(U,W ).

Proof Exercise (consider the natural projection map πX : X ⊕ Y → X).

Notation. For a semisimple KG-module M and a simple KG-module S, denote by [M : S] the
multiplicity of S as a direct summand, up to isomorphism, of M , i.e. the maximal number m such
that M ∼= S⊕m ⊕M ′.

Proposition 8.5 (Krull-Schmidt property). Suppose that K is algebraically closed and charK -
|G|. For a finite-dimensional KG-module M and simple KG-module S, we have

[M : S] = dimK HomKG(M,S) = dimK HomKG(S,M).

In particular, if M ∼= S1⊕· · ·Ss and M ∼= T1⊕· · ·⊕Tt are two decomposition of M into direct sum of
simple KG-modules, then we have s = t and a permutation σ ∈ St so that Si ∼= Tσ(i) for all 1 ≤ i ≤ t.

This is only a (very) special case for the Krull-Schmidt theorem, which says that the Krull-Schmidt
property (=unique decomposition into direct sum of indecomposables) holds for any finite-dimensional
K-algebras (without assumption on the field K); we provide a group representation theoretic proof of
this instead.

Proof By Maschke’s theorem, we can write M = S1⊕· · ·⊕Ss for simple modules S1, . . . , Ss. Hence,
we have

dimK HomKG(M,S) =
s∑
i=1

dimK HomKG(Si, S) = #{i ∈ [1, s] | Si ∼= S} = [M : S],

where the first equality comes from repeatedly applying Lemma 8.4, and the second comes from Schur’s
lemma. The proof for dimK HomKG(S,M) is similar. One can then show the final statement using
the formula and induction on s.

9 Representations of finite abelian groups

One application of Schur’s lemma is that it allows us to say a very useful fact about irreducible
representations of a finite abelian group.

Recall that the center of a group G is the subgroup

Z(G) := {z ∈ G | zg = gz ∀g ∈ G}.

Likewise, the center of the group algebra KG is the (commutative) subring

Z(KG) := {z ∈ KG | zx = xz ∀x ∈ KG}.

Note that it is enough to check zg = gz for all g ∈ G when calculating Z(KG). Also, we have natural
inclusion (of sets) Z(G) ↪→ Z(KG).

Exercise 9.1. If H EG is a normal subgroup of G, then
∑

h∈H h ∈ Z(KG).

Lemma 9.2. Let ρ : G→ GL(V ) be a G-representation. If V is simple and K is algebraically closed,
then for each z ∈ Z(KG), there is a canonical λV,z ∈ K× such that the assignment z 7→ λV,z restricts
to a group homomorphism ξV : Z(G)→ K×.
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Proof It is routine to check that the map

fz : V → V, v 7→ zv(:= ρz(v))

is K-linear. Since zg = gz for all g ∈ G, we have fzρg = ρgfz for all g ∈ G. Thus, fz satisfies the
condition of being a KG-homomorphism (note that this is possible without V being simple nor K
being algebraically closed).

Suppose now that V is simple and K is algebraically closed. It then follows from Schur’s lemma
(Lemma 8.3) that fz = λV,z idV for some λV,z ∈ K×. It is routine (Exercise) to check that ξV is a
group homomorphism. (More generally, Z(KG)→ K× is a semigroup homomorphism.)

Proposition 9.3. For K algebraically closed, every irreducible K-linear representation of a finite
abelian group is 1-dimensional.

Proof Let G be a finite abelian group and V a simple KG-module. As in Lemma 9.2, for each
z ∈ G = Z(G), we have fz = λV,z idV ∈ EndKG(V ) := HomKG(V, V ). Hence, for any non-zero v ∈ V ,
Kv is a non-zero G-invariant subspace of V , and so irreducibility of V implies that Kv = V .

Remark 9.4. One can prove this without so much representation theory. Just use the fact that
commuting diagonalizable matrices can be simultaneously diagonalized.

Exercise 9.5. Proposition 9.3 can fail without the algebraically closed assumption. Consider G =
C3 = 〈g | g3 = 1〉 and K be a field with charK = 0. Define a matrix G-representation R : G→ GL2(K)
given by

Rg :=

(
0 1
−1 −1

)
,

(1) Show that when K = R, R is an irreducible R-linear C3-representation.

(2) For K = C, find i, j ∈ {1, 2, 3} so that R ∼= R(i) ⊕R(j) (for the R(a)’s given in Example 4.3).

Recall that every finite abelian group G is isomorphic to the direct product Cn1 × · · ·Cnr of cyclic
groups. Also, over an algebraically closed field K, the n-th root of 1 forms the cyclic group Cn of
order n:

Cn ∼= {x ∈ K× | xn = 1K} =: µn.

Proposition 9.6. Over an algebraically closed field K with charK - |G|, A finite abelian group
G ∼= Cn1 × · · · × Cnr has exactly |G| irreducible K-linear representations, each of which is labelled by
a tuple (λ1, . . . , λr) ∈

∏r
i=1 µni.

Proof A finite abelian group G is of the form Cn1 × · · · ×Cnr . Let gi be the generator of the factor
Cni . Take an irreducible representation ρ : G → GL(V ). It follows from Lemma 9.2 Proposition
9.3 that dimK V = 1 with each gi acts by multiplying a scalar λV,i ∈ K. Since gni

i = 1, we have
λni
V,i = 1 ∈ µni . Thus, V 7→ (λV,1, . . . , λV,r) defines a map α from the set of (representative of)

isomorphism classes of irreducible representations

α : {irreducible representation V }/ ∼=→ µn1 × µn2 × · · · × µnr .

α injective: Suppose that (λV,i)i = (λV ′,i)i, then gi acts the same way for all i, and so V ∼= V ′.

α surjective: Given (λi)i ∈ µn1 × · · · × µnr . Define a map ρ : G → GL1(K) = K× as follows. Take
ρ(gi) := λi for all i = 1, . . . , r. In general, any g ∈ G is of the form g = ga11 · · · garr , and we define
ρ(g) := λa11 · · ·λarr . It is clear that ρ is a group homomorphism.

Remark 9.7. α fails to be injective when p := charK divides |G| as #{x ∈ K | xn = 1} < n when p|n
(note: xp − 1 = (x − 1)p over such a field). Nevertheless, a similar argument can still applies (note:
Proposition 9.3 still holds) – for example, there is only one irreducible representation over a p-group
(i.e. a group where every element has order pk for some k), namely, the trivial representation.
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Example 9.8. For G = C3 and K = C, it follows from Proposition 9.6 that the three (pairwise
non-isomorphic) irreducible 1-dimensional R(i) from Example 4.3 are all the irreducible (hence, inde-
composable, by Maschke) representations up to isomorphism.

Example 9.9. Recall that the Klein 4-group V4 is the abelian group of order 4 given by 〈a, b | a2 =
1 = b2, ab = ba〉 ∼= C2 × C2. Thus we have 4 (isomorphism classes of) irreducible representations
ρ(0,0), ρ(1,0), ρ(0,1), ρ(1,1) where

ρ(i,j) :


a 7→ (−1)i,

b 7→ (−1)j ,

ab 7→ (−1)i+j

for all i, j ∈ {1, 2}.

Proposition 9.10. Let G be a finite group and K be an algebraically closed field with charK - |G|.
If every irreducible K-linear G-representation is 1-dimensional, then G is abelian.

Proof By Maschke’s theorem (Theorem 7.2), we have KG = S1 ⊕ · · · ⊕ Sn for simple KG-modules
S1, . . . , Sn. By assumption, we have dimK Si = 1 and so we can write Si = Kvi with B := {vi}1≤i≤n
forming a K-basis of KG. Thus, with respect to this basis, the matrix of every g ∈ G of the regular
representation is a diagonal matrix and pairwise commute. Note that the regular representation
ρ : G → GL(KG) has Ker(ρ) = 1 (the matrix of ρg with respect to the canonical basis G is a non-
trivial permutation matrix for all element g 6= 1G of G), and so Im(ρ) ∼= G has pairwise commuting
elements, i.e. G is abelian.

Finally, we show one small application of representation theory on group theory – how existence of
certain type of representations guarantee a finite abelian group is cyclic.

Proposition 9.11. For a finite group G and K algebraically closed, if there is an irreducible rep-
resentation ρ : G → GL(V ) with Ker(ρ) = 1G (i.e. ρ is faithful), then the center Z(G) of G is
cyclic.

Proof Consider the group homomorphism ξV : Z(G)→ K× of Lemma 9.2. ξV (z) = 1 implies that
z acts trivially on V . Since Ker(ρ) = 1G , we have ξV (z) = 1 implies that z = 1G. Hence, ξV is
injective, which means that Im(ξV ) ∼= Z(G). Since K× is abelian and Z(G) is finite, Im(ξV ) ∼= Z(G)
is isomorphic to product of cyclic groups, say, Cpn1

1
× · · · × Cpnr

r
with pi primes.

Claim: pi’s are pairwise distinct.

Proof of Claim: Consider m := lcm(pn1
1 , . . . , pnr

r ), which has m ≤ pn1
1 · · · pnr

r always.

For any generator gi of the factor Cpni
i

(any 1 ≤ i ≤ r), we have (gi)
p
ni
i = 1, and so (gi)

m = 1.

However, {x ∈ K× | xm = 1} is a group (under multiplication) of order at most m, and so we have
m = n = pn1

1 · · · pnr
r . �

It follows from the claim and the Chinese Remainder theorem that Im(ξV ) ∼= Cn for n := pn1
1 · · · pnr

r ,
and now we are done.

10 Irreducible and regular representations

Over a field in good characteristic, we have completely answered Question (1) now for finite abelian
groups in the previous section; we will give some partial progress towards Question (1) for other finite
groups now. (If you are ring theorists, then this section is just a corollary of the Artin-Wedderburn
theorem combined with Maschke’s theorem.)
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Careful audience may notice from the previous two propositions that “everything” is encoded within
the regular representation V = KG.

Lemma 10.1 (Yoneda). Let M be any KG-module. Then we have a K-vector space isomorphism
HomKG(KG,M) ∼= M .

Proof Take any m ∈ M , define a map fm : KG → M that maps x 7→ xm. It is routine to check
that this is a homomorphism of KG-modules. Now we have a K-linear map

α : M → HomKG(KG,M), m 7→ (fm : x 7→ xm).

α is injective: fm = 0 means that m = f(1KG) = 0.
α is surjective: For any f ∈ HomKG(KG,M), f is determined by the image of 1KG under f , since f
is a K-linear map, G is a basis of KG, and g(f(1)) = f(g1) = f(g) holds for all g ∈ G. Hence, f = fm
where m = f(1KG), and so α is surjective.

Remark 10.2. (1) Actually, HomKG(KG,M) can be equipped with a KG-module structure as KG is
a KG-bimodule (see later section) and the isomorphism is actually a KG-module isomorphism.

(2) For category theorist: we view KG as a category C with single object ∗ and morphisms C(∗, ∗) :=
KG. A KG-module M is the same as a functor F : C → VecK valued in the category of K-vector
spaces via F (∗) := M . Homomorphisms between KG-modules are just natural transformations of
such functors.

Proposition 10.3. Up to isomorphism, every irreducible G-representation is a quotient representation
of the regular representation.

Proof Let V be a simple KG-module and v ∈ V a non-zero element. Consider the KG-module
homomorphism fv : KG → V that maps fv(x) := xv as in Lemma 10.1. Then Im(fv) ⊂ V is a
quotient of the KG-module KG, and also a KG-submodule of V . As V is simple, and fv =6= 0, we
have Im(fv) ∼= V .

Remark 10.4. The same result actually holds without the assumption on characteristic and also holds
if we replace ‘quotient’ by ‘sub’. Under good characteristic, we can deduce the ‘sub’ version of the
lemma as Im(fv) is a direct summand of V . For the case when charK divides |G|, we can either use
the fact that KG is a so-called ‘symmetric algebra’ (meaning that (KG)∗ ∼= KG, see later section on
‘Dual representation’), which allows us to dualise a surjective homomorphism KG� V to an injective
one V ∗ ↪→ (KG)∗ ∼= KG. Then use the fact that dual representation preserves irreducibility and the
fact that dualisation is an involutive operation on the set of (isomorphism classes of) irreducible
representations.

Corollary 10.5. For a finite group G, there are only finitely many irreducible representations up to
isomorphism when charK - |G|.

Proof This is because KG is a finite-dimensional KG-module, so we can only have finitely many
quotients of KG. The claim now follows from Proposition 10.3.

Corollary 10.6. Suppose K is algebraically closed with charK - |G|. Let {S1, . . . , Sr} be the complete
set of isomorphism classes of simple KG-modules. Then we have KG-module isomorphism

KG ∼= Sd11 ⊕ · · · ⊕ S
dr
r

with di = dimK Si for all 1 ≤ i ≤ r.

Proof By Maschke’s theorem and Proposition 10.3, we have a (unique, by Krull-Schmidt property
Proposition 8.5) decomposition

KG ∼= S
[KG:S1]
1 ⊕ · · · ⊕ S[KG:Sr]

r
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of KG into a direct sum of simple modules S1, . . . , Sr with [KG : Si] ≥ 1. In fact, Proposition 8.5
already tells us that di = [KG : Si] = dimK HomKG(KG,Si). By Lemma 10.1, we have [KG : Si] =
dimK Si, and the assertion follows.

Our next goal is to relate the number r with group-theoretic information of G. On the way, we will
also show a ring-theoretic description of KG – in ring theoretic terms, what we want to do is to find
Artin-Wedderburn decomposition of KG.

Definition 10.7. Let C be a conjugacy class in G. The class sum is the element C :=
∑

g∈C g ∈ KG.

Recall that the center Z(A) := {a ∈ A | ab = ba∀b ∈ A} of a ring A is commutative.

Proposition 10.8. Suppose C1, . . . , Cr are all conjugacy classes of G. Then {C1, . . . , Cr} is a K-basis
of Z(KG).

Note that Proposition 10.8 requires no characteristic assumption.

Proof (1) Ci ∈ Z(KG) for all i: By definition, gCig
−1 = Ci for any g ∈ G, so we have gCi = Cig

which implies, by linearity, that Ci ∈ Z(KG).

(2) {Ci}i is linear independent: Simply because each g ∈ G lies in precisely one conjugacy class.

(3) Spanning: Suppose that v =
∑

g λgg ∈ Z(KG). Then for all h ∈ G we have

v = hvh−1 =
∑
g

λghgh
−1 =

∑
k∈G

λh−1khk.

Hence, as G is the basis of KG, comparing coefficients yields λg = λhgh−1 for all g, h ∈ G. In other
words, λg is constant over the conjugacy class containing g. This means that v is in the span of
{Ci}i=1,...,r.

Lemma 10.9. Let Matn(K) be the ring of n × n-matrices. Then we have a ring isomorphism
Z(Matn(K)) ∼= K.

Proof There is a map K → Z(Matn(K)) given by λ 7→ λ id; it is routine to check that this is a ring
isomorphism (Exercise).

Definition 10.10. For rings A,B, we have a new ring A × B called the direct product of A and B
given by the usual Cartesian product on the underlying set with multiplication (a, b)(a′, b′) := (aa′, bb′).

Exercise 10.11. (i) Show that there is a ring isomorphism EndA(A)op ∼= A for any ring A, where,
for a ring Λ
• EndΛ(X) := HomΛ(X,X) is the endomoprhism ring of Λ-module X with multiplication

given by composition of maps, and

• Λop is the opposite ring of a ring Λ with multiplication a ·op b := b · a.

(ii) Show that Z(A×B) = Z(A)× Z(B).

(iii) Suppose M,N are A-modules with HomA(M,N) = 0 = HomA(N,M). Show that EndA(M ⊕
N) = EndA(M)× EndA(N).

(iv) Suppose S is a simple KG-module over an algebraically closed field K. Show that there is a ring
isomorphism EndKG(S⊕m)op ∼= Matm(K).

Theorem 10.12. Over an algebraically closed field K with charK - |G|, we have a ring isomorphism

KG ∼= Matd1(K)× · · · ×Matdr(K),

where Matn(K) is the ring of n× n-matrices over K, and r is the number of conjugacy classes of G.
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Proof We have ring isomorphisms

(KG)op ∼= EndKG(KG) by Ex 10.11(i)

∼= EndKG(Sd11 ⊕ · · · ⊕ S
dr
r ) by Cor 10.6

∼= EndKG(Sd11 )× · · · × EndKG(Sdr) by Schur’s lemma + Ex 10.11(iii)
∼= Matd1(K)× · · · ×Matdr(K) by Exercise 10.11(iv).

Note that Matd(K)op ∼= Matd(K). Hence, we can apply Lemma 10.9 and Exercise 10.11 (ii) to get
the following ring isomorphisms

Z(KG) ∼= Z
(

Matd1(K)× · · ·Matdr(K)
) ∼= Z(Matd1(K))× · · · × Z(Matdr(K)) ∼= K × · · · ×K.

In particular, we have r = dimK Z(KG), which is the same as the number of conjugacy classes in G
by Proposition 10.8.

Remark 10.13. For K algebraically closed with charK = p > 0, the number of isoclasses of simple
KG-modules coincides with the p′-conjugacy classes, i.e. conjugacy class C such that p does not
divides |C|. The proof is much more involved and require closer comparison bewteen KG/ radKG
and Z(KG), where radKG is the Jacobson radical of KG.

Exercise 10.14. Recall from Example 6.3 that there is a 2-dimensional irreducible representation V2

of G = D6 = 〈a, b | a3 = 1 = b2〉.
(1) Find u, v ∈ KG so that the K{u, v} is the subrepresentation of KG that is isomorphic to V2.

(2) Find a basis {v1, v2, . . . , v6} of KG so that

KG ∼= K{v1} ⊕K{v2} ⊕K{v3, v4} ⊕K{v5, v6}

as KG-module. Describe each of these subrepresentations (by their name/action).

11 Dual space

Recall that the (K-)dual space V ∗ of a K-vector space V is the vector space given by linear 1-form

V ∗ := HomK(V,K) = {linear map f : V → K}.

Let ρ : G → GL(V ) be a K-linear G-representation. For any g ∈ G and K-linear map α ∈ V ∗ :=
HomK(V,K), consider the following map

ρ∗g(α) : V → K, v 7→ α ◦ ρg−1(v) = α(g−1v).

Clearly, ρ∗g : V ∗ → V ∗ given by α 7→ ρ∗g(α) is a K-linear map.

Lemma 11.1. For a representation ρ : G→ GL(V ). Then ρ∗ : G→ GL(V ∗) given by g 7→ ρ∗g is also
a G-representation.

Proof (1) ρ∗g ∈ GL(V ∗): We have

ρ∗g−1ρ
∗
g(α) = ρ∗g−1(α ◦ ρg−1) = (α ◦ ρg−1) ◦ ρg = α ◦ (ρg−1 ◦ ρg) = α.

Note that, in particular, we have (ρ∗g)
−1 = ρ∗g−1 .
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(2) ρ∗ is a group homomorphism: Clearly ρ∗1G = idV ∗ . We check ρ∗gh−1 = ρ∗gρ
∗
h−1 . Take α ∈ V ∗, then

we have

ρgh−1 ∗ (α) = α ◦ ρ(gh−1)−1 = α ◦ ρhg−1

= α ◦ (ρhρg−1) = (α ◦ ρh) ◦ ρg−1

=
(
ρ∗h−1(α)

)
◦ ρg−1

= ρ∗g(ρ
∗
h−1(α))

= (ρ∗g ◦ ρ∗h−1)(α)

Remark 11.2. Consider any matrix representation R : G → GLn(K) associated to ρ : G → GL(V )
with respect to a basis B = {v1, . . . , vn} of V . Let B∗ be the dual basis of V ∗, i.e. B∗ = {α1, . . . , αn}
with αi(vj) = δi,j . Then the matrix representation R∗ associated to ρ∗ with respect to B∗ has action
matrix R∗g given by the transpose Rtg−1 of Rg−1 .

Although V ∗ ∼= V for any (finite-dimensional) K-vector space, this generally does not lift to an
isomorphism of KG-modules.

Example 11.3. Consider the 1-dimensional representation R(k) of C3 where the generator g acts as
(multiplying )ωk = exp(2kπi/3). Then (R(1))∗ ∼= R(2) and (R(0))∗ ∼= R(0).

Definition 11.4. A KG-module V is self-dual if V ∗ ∼= V as KG-modules.

Exercise. Trivial representation and sign representation are both self-dual.

Proposition 11.5. The regular representation is self-dual.

Proof KG has K-linear basis G. The canonical (dual) basis of (KG)∗ is given by {αg | g ∈ G}
where αg(h) := δg,h, i.e. αg(g) = 1 and αg(h) = 0 for all h ∈ G \ {g}.

Consider the K-linear map α : KG → (KG)∗ given by linearly extending g 7→ αg. This is clearly a
K-vector space isomorphism. So we only need to show that α is a KG-module homomorphism. For
any g, h, k ∈ G, we have

(hα(g))(k) = (h · αg)(k) = αg(h
−1k) = δg,h−1k = δhg,k = αhg(k) = (α(gh))(k).

This shows the claim.

Remark. In ring theory, this is the same as saying that KG is self-injective. In fact, KG is a symmetric
Frobenius algebra, meaning that (KG)∗ ∼= KG as a KG-KG-bimodule.

Definition 11.6. Let f : V →W be a homomorphism of KG-modules. Define f∗ : W ∗ → V ∗ by

f∗(α)(v) := α(f(v))

for all α ∈W ∗ and v ∈ V .

Lemma 11.7. f∗ is a homomorphism of KG-modules. Moreover, it maps surjective homomorphism
to injective ones, and vice versa.

Proof Exercise.

Lemma 11.8. If V is a simple KG-module, then so is V ∗.

Proof Take the smallest non-trivial quotient KG-module U of V ∗, then U is necessary simple
and we have a non-zero surjective homomorphism V ∗ � U . Dualising yield a non-zero injective
homomorphism U∗ ↪→ V . Since V is simple, we have U∗ ∼= V , which means that V ∗ ∼= U is simple.
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Proposition 11.9. Every irreducible representation is, up to isomorphism, a subrepresentation of the
regular representation.

Proof Combine Proposition 10.3 and Lemma 11.8.

12 Tensor product

Definition 12.1. Let V,W be finite-dimensional K-vector space with bases, say, B, C respectively.
Then the tensor product V ⊗KW (or simplifies to V ⊗W if context is clear) is the finite-dimensional
K-vector space with basis given by

{v ⊗ w | v ∈ B, w ∈ C}.

Suppose B = {v1, . . . , vm} and B = {w1, . . . , wn}. Then for v =
∑

i λivi and w =
∑

j λjwj , we can use
the short-hand

v ⊗ w :=
∑
i,j

λiµj(vi ⊗ wj) ∈ V ⊗W.

Lemma 12.2. Consider λ ∈ K, v, v′ ∈ V and w,w′ ∈W . Then we have the following.

(1) (λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw).

(2) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w.

(3) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′.

Proof These are simple algebraic rewriting of symbols. For example, taking basis B, C as before,
the first equality of (1) is just

(λv)⊗ w = λ(
∑
i

λivi)⊗ (
∑
j

µjwj) =
∑
i,j

λλiµj(vi ⊗ wj) = λ
∑
i,j

λiµj(vi ⊗ wj) = λ(v ⊗ w).

etc.

Be very careful that there are elements V ⊗W that can not be written in the form of v⊗w for v ∈ V
and w ∈W . In particular, one common newbie mistake is to regard the following distinct elements as
the same:

v1 ⊗ w1 + v2 ⊗ w2 6= (v1 + v2)⊗ (w1 + w2).

The right-hand side is really v1 ⊗ w1 + v1 ⊗ w2 + v2 ⊗ w1 + v2 ⊗ w2.

Lemma 12.3. The space V ⊗K W does not depend on the choice of basis on V and W .

Proof Take any other basis {v′1, . . . , v′m} of V and {w′1, . . . , w′n} of W , with change of basis

vi =
∑
k

αk,iv
′
k and wj =

∑
l

βl,jw
′
l.

Then
vi ⊗ wj =

∑
k,l

αk,iβl, jv
′
k ⊗ w′l.

Hence, {v′k ⊗ w′l}k,l spans V ⊗K W , and this spanning set has size the mn; thus, it is a basis.

One can define V ⊗KW in a basis-free way. Notice that if we write v⊗w as 〈v, w〉, then the ‘relations’
in Lemma 12.2 says that 〈−, ?〉 is like a “bilinear form without value”. This can be phrased more
precisely as follows.
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Lemma 12.4. Given any bilinear form b := 〈−, ?〉 : V ×W → K, there is always a unique K-linear
map θb : V ⊗K W → K so that the following diagram commutes:

V ×W ∀b=〈−,?〉
++

��
K

V ⊗K W
∃!θb

33

where the vertical map is given by (v, w) 7→ v ⊗ w.

More generally, we can replace K by any vector space U in the statement above, and ‘bilinear form’
replaced by bilinear map, i.e. map that is linear in both the V -component and W -component of
V ×W .

Proof Clear from Lemma 12.2 and the definition of v ⊗ w that θb(v ⊗ w) := 〈v, w〉 is the desired
(K-linear) map.

The universal property of tensor product says that for any vector space U that satisfies the property:

• suppose there is a bilinear map V ×W → T such that, for all bilinear map b : V ×W → U ,
there is a K-linear map f : T → U so that b = fa:

V ×W ∀b: bilinear

++
bilinear

��
K

T ∃θb: linear

33

then T ∼= V ⊗K W .

In more advanced texts, tensor products are most probably defined using universal property, and
one shows that it does exists and is unique (up to unique(!) isomorphism). Since we concerns only
finite-dimensional vector spaces, a more practical approach via basis is (likely) easier to understand.

The following innocent looking isomorphisms are arguably the most used isomorphisms in homological
algebra.

Lemma 12.5. For any finite-dimensional K-vector spaces U, V,W , the following hold.

(1) V ∗ ⊗K W ∼= HomK(V,W ).

(2) HomK(U ⊗K V,W ) ∼= HomK(U,HomK(V,W )).

Proof (1) Let B = {v1, . . . , vm}, C = {w1, . . . , wn} be bases of V,W respectively. Let B∗ =
{f1, . . . , fm} be the canonical dual basis, i.e. fi(vj) = δi,j for all 1 ≤ i, j ≤ m.

Define θ(fi⊗wj) to be the K-linear map that extends vk 7→ fi(vk)wj ∈W and check that θ is K-linear.

Conversely, for α ∈ HomK(V,W ), let φ(α) :=
∑

i fi ⊗ α(vi). Check that φ and θ are inverse to each
other.

(2) Define
θ : HomK(U ⊗ V,W )→ HomK(U,HomK(V,W )), f 7→ θf ,

where θf (u) : V →W is the map that sends v ∈ V to f(u⊗ v) ∈W .

Define also
φ : HomK(U,HomK(V,W ))→ HomK(U ⊗ V,W ), f 7→ φf ,

where φf (u⊗ v) := (f(u))(v). Check that φ and θ are inverse to each other.
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Remark 12.6. The isomorphism (1) absolutely require finite-dimensionality. This property also pro-
vides a way to interpret the tensor product space as the space of linear transformation (matrices). The
isomorphism (2) is called ‘currying’ in computer science, coined from Curry-Howard correspondence.
This isomorphism is actually natural, and yields an adjoint pair (−⊗K V,HomK(V,−)) of functors.

Example 12.7. Consider A = (ai,j)1≤i,j≤m ∈ Matm(K) and B ∈ Matn(K) and defines (what is
sometimes called Kronecker product of matrices)

A⊗B :=


a1,1B a1,2B · · · a1,mB

a2,1B
. . . a2,mB

...
. . .

...
am,1B am,2B · · · am,mB

 .

Then we have an isomorphism of algebras

Matm(K)⊗K Matn(K)→ Matmn(K), (A,B) 7→ A⊗B.

From this, we can see that (A ⊗ B)−1 = A−1 ⊗ B−1, if (and only if) both A,B are invertible. Thus,
the isomorphism restricts to a group isomorphism GL(K⊕m)⊗K GL(K⊕n) ∼= GL(K⊕mn).

Exercise 12.8. (1) Show that for finite groups G,H, KG ⊗K KH has a canonical ring structure
so that KG⊗K KH ∼= K(G×H) as rings.

(2) Show that KG⊗K (KG)op has a canonical ring structure so that KG⊗K (KG)op ∼= K(G×G)
as rings. Here Rop denotes the opposite ring of a ring R whose underlying set is the same as R
but has multiplication a ·op b := ba.

One thing that makes group algebras special is that we can always ‘tensor within the category of
G-representations’:

Proposition 12.9. For any KG-modules V,W , we have a KG-module V ⊗K W where the action of
g is given by v ⊗ w 7→ gv ⊗ gw.

Proof Let B, C be the K-linear bases of V,W respectively and consider their respective repre-
sentations ρ : G → GL(V ) and φ : G → GL(W ). Consider the associated matrix representations
[ρ]B : G→ Matm(K) and [φ]C : G→ Matn(K). Define a map

Ψ : G→ Matmn(K) = Matm(K)⊗Matn(K), g 7→ [ρg]B ⊗ [φg]C ,

where we are using the Kronecker product of Example 12.7 to define Ψ(g). One can check that Ψ is a
group homomorphism (hence, a matrix representation of G); by construction, we have g ∈ G acts on
V ⊗W by v ⊗ w 7→ gv ⊗ gw.

Exercise 12.10. Show that trivG⊗KV ∼= V ∼= V ⊗K trivG for all KG-module V .

Detour: Even in good characteristics, tensor products of group (or Hopf algebra in general) represen-
tations is still active theme of researches - one typical theme of problem is: For KG-modules V,W ,
describes the indecomposable direct summands of V ⊗K W .

For example, in the representation theory of symmetric groups (its generalisations such as the Hecke
algebra), the Mullineux problem asks for the description of V ⊗K sgn for each irreducible V . Another
example is McKay correspondence (which has deep implications in algebraic geometry) which comes
from looking at representations of finite subgroups of SL2(C) and relate them under tensoring with
the natural representation (SL2 matrix multiplying on vectors).

Exercise 12.11. For KG-module V,W , show that there are the following isomorphisms.

(1) (V ⊗K W )∗ ∼= V ∗ ⊗K W ∗ as KG-modules.
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(2) V ∗ ⊗K W ∼= HomK(V,W ) as KG-modules.

Exercise 12.12. Suppose X is a G-set (i.e. G acts by permuting elements of X) or a KG-module,
denote by XG the invariant subspace {x ∈ X | gx = x ∀g ∈ G} of X. Let U, V,W ∈ KGmod.

(1) Show that (V ∗ ⊗K V )G ∼= EndKG(V ).

(2) Show that HomKG(U ⊗K V,W ) ∼= HomKG(U, V ∗ ⊗K W )

Exercise 12.13. Show that, for G-representations V,W , there is an isomorphism HomK(V,W ) ∼=
V ∗ ⊗K W of G-representations.

13 Character

From now on until further notice, we take K = C.

Definition 13.1. Let ρ be a representation of G over C, and V be its corresponding CG-module.
Then the (ordinary) character of ρ (or of V ) is the map

χρ = χV : G→ C, g 7→ Tr(ρ(g)),

where Tr is the trace function (i.e. sum of all eigenvalues/‘diagonal entries’). A character χρ is
irreducible if the associated representation ρ is irreducible.

In the literature, when χ is the character of ρ, then one often says that ρ or V affords χ; we will just
use ‘associated to’ instead for simplicity.

Note that the character of a 1-dimensional representation is just itself. In some geometry-oriented
texts, a character is used as a synonym for 1-dimensional representation. The term ‘character’ has a
different definition when considered for representation of Lie groups or Lie algebras; but the essential
idea is still somewhat the same - it is a gadget that records the eigenvalues of action.

Definition 13.2. The degree of a character χV is dimC V .

In some literature, degree 1 character are also called linear character; we will avoid this terminology.

Example 13.3. When ρ = trivG, write 1G for its character and call it the trivial character. This is
a degree 1 irreducible character.

In the following, for z = a+ ib ∈ C, denote by z its conjugate a− ib.

Lemma 13.4. Let χ = χV be the character of CG-module V .

(1) degχ := dimC V = χ(1).

(2) χV is constant on each conjugacy class of G.

(3) χ(g) is a sum of m-th roots of unity if g ∈ G is of order m.

(4) χ(g−1) = χ(g) for any g ∈ G of finite order.

(5) χ(g) ∈ R if g and g−1 is in the same conjugacy class.

(6) χV = χW if V ∼= W are isomorphic CG-modules.

Proof (1) Clear since χ(1) = Tr(idV ).

(2) Since Tr(fg) = Tr(gf) for any linear transformations f, g. We have Tr(ρhgh−1) = Tr((ρhρg)ρ
−1
h ) =

Tr(ρ−1
h ρhρg) = Tr(ρg).
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(3) gm = 1G implies that ρmg = idV , and so λm = 1 for every eigenvalue λ of ρg.

(4) Suppose λ1, . . . , λn are the eigenvalues (counted with multiplicity, i.e. n = dimC V ) of ρg. Since
these are roots of unity, we have λ−1

i = λ. Hence,

χV (g−1) =
n∑
i=1

λ−1
i =

n∑
i=1

λi = χV (g).

(5) Consequence of (2) and (4).

(6) Suppose f : V → W is a CG-module isomorphism. Then we have fρgf
−1 = φg for ρ, φ the

representations corresponding to V,W respectively. Now we have

χW (g) = Tr(φg) = Tr(fρgf
−1) = Tr(ρg) = χV (g).

Exercise 13.5. Show that for a character χ = χV , Kerχ := {g ∈ G | χ(g) = χ(1)} is a normal
subgroup of G.

Exercise 13.6. Show that
∑

i χi(1)2 = |G| where the sum is over all irreducible characters.

14 Characters of various constructions

Recall that we can take direct sum and tensor products of representations, which behaves like addition
and multiplication respectively. Indeed, this is the case forK-vector spaces, namely, that dimKmod→
Z ‘sends’ ⊕ to + and ⊗ to ×. Note that C = C1 is the group algebra of the trivial group, and so
character of C1 is nothing but just the degree of the character, i.e. dimC by Lemma 13.4 (3). Hence,
it makes sense to view characters as a generalisation of dimC.

Lemma 14.1 (Character of direct sum). For two CG-modules V,W , we have χV⊕W = χV +χW .

Proof Consequence of Lemma 6.9.

If ρ = πX is a permutation representation associated to G-set X, then χρ is called permutation
character; in this case, by abuse of notation we write πX for χπX .

Lemma 14.2 (Permutation character). For all g ∈ G and any G-set X, we have πX(g) = #Xg,
where Xg := {x ∈ X | gx = x} is the set of g-fixed points.

Proof Consider the matrix corresponding to g-action with respect to the basis X. Then a diagonal
entry, say, corresponding to x ∈ X is non-zero if, and only if, gx = x. Moreover, in such a case, the
entry is exactly 1.

Exercise 14.3. Suppose CG has r conjugacy classes. Prove that πG =
∑r

i=1 deg(χi)χi, where χi = χSi

is the character of a simple CG-module such that Si � Sj for all i 6= j. Moreover, determine the value
χV (g) for all g ∈ G.

Recall that for a representation ρ : G→ GL(V ), we have a dual representation ρ∗ : G→ GL(V ∗).

Lemma 14.4 (Character of dual representation). For any g ∈ G, χV ∗(g) = χV (g) = χV (g−1).
In particular, we have the following:

(1) If V is self-dual, then its character χV is real-valued.
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(2) If χ = χV is irreducible, then so is χ.

Proof Since ρ∗(g) = (ρ(g−1))T by definition, the claim follows from Lemma 13.4 (4).

(1) now follows from the definition of self-dual and Lemma 13.4 (4): V ∼= V ∗ implies that χV (g) =
χV ∗(g) = χV (g).

(2) follows from Lemma 11.8.

Lemma 14.5 (Character of tensor product). Let V,W be two CG-modules. For any g ∈ G, we
have χV⊗W (g) = χV (g)χW (g).

Proof This follows from the fact that the matrix form of ρV⊗W (g) is the Kronecker product (Ex-
ample 12.7) of those of ρV (g) and ρW (g).

15 Class functions

Definition 15.1. A class function on G is a C-valued function ψ : G→ C that is constant over each
conjugacy class, i.e. ψ(g) = ψ(h) whenever g and h are in the same conjugacy class. Denote by C(G)
the set of all class functions on G.

For ψ, φ ∈ C(G) and λ ∈ C, define:

(1) λφ the class function given by (λφ)(g) := λ(φ(g));

(2) ψ + φ the class function given by pointwise addition (i.e. (ψ + φ)(g) := ψ(g) + φ(g));

(3) ψφ the class function given by pointwise multiplication (i.e. (ψφ)(g) := ψ(g)φ(g)).

In particular, C(G) is a C-vector space (and a C-algebra).

From now on, unless otherwise specified, unadorned ⊗ means ⊗C.

Lemma 15.2. A character is a class function on G.

Proof Immediate from Lemma 13.4 (2).

Exercise 15.3. Write χV the function g 7→ χV (g). Show that χHomC(V,W ) = χV χW .

For ease of exposition, we take G = C1 t . . . t Cr the decomposition of G into conjugacy classes. We
also take representatives g1, . . . , gr with gi ∈ Ci, and assume always that g1 = 1G.

Definition 15.4. The characteristic function δj associated to conjugacy class Cj is the class function
given by

δj(g) :=

{
1, g ∈ Cj ;
0, g /∈ Cj .

Lemma 15.5. dimC C(G) is the number of conjugacy classes of G.

Proof Suppose there are r conjugacy classes of G. Then it follows from Lemma 13.4 (2) that
{δ1, . . . , δr} form a basis of C(G).

Recall that there are exactly the number of (isomorphism classes of) irreducible representations also
coincide with the number of conjugacy classes of G.
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Definition 15.6. Let χ1, . . . , χr be the irreducible characters of G. The character table of G is the
matrix (χi(gj))1≤i,j≤r.

In practice, we draw the character table with a heading row labelled by the conjugacy classes (or their
representatives) and a heading column labelled by the irreducible characters.

The usual convention also takes the first row to be the trivial character χ1 = χtriv (and so the first
row is just a row of 1’s), and the first column to be the conjugacy class C1 = {1} (and so the first
column tells us the dimension of each irreducible representation). In the symmetric group case, it is
also usual to take the second row to be the character associated to the sign representation χ2 = χsgn.

Example 15.7 (Character table of Cn). Each element of Cn = 〈g | gn = 1〉 is a conjugacy classes
of its own. From our previous study on irreducible representations of finite abelian group, we can take
χk, with 1 ≤ k ≤ n, to be the character of the irreducible representation where g acts by ξk−1 for
ξ := exp(2πi/n).

Hence, the character table is of the form

1 g gj(1 ≤ j ≤ n)

χ1 1 1 1

χ2 1 ξ ξj

χk 1 ξk ξkj

Example 15.8 (Character table of D6
∼= S3). We have D6 = 〈a, b | a3 = 1 = b2, abab = 1〉. There

are three conjugacy classes

C1 = {1}, C2 = {b, ab, a2b}, C3 = {a, a2}.

We have also seen three irreducible representations: trivial, sign, and a 2-dimensional representation
(Example 6.3(3)) given by

a 7→
(
ω 0
0 ω−1

)
and b 7→

(
0 1
1 0

)
.

Then we have the following character table.

1 b a

χ(3) 1 1 1

χ(13) 1 −1 1

χ(2,1) 2 0 −1

Here we use a slightly weird labelling of the irreducible characters. They correspond to the partitions
of the number 3.

16 Inner product on class functions

We now take a closer look to the space C(G) of class functions.

Recall that an inner product on a C-vector space X is a non-degenerate Hermitian form 〈−,−〉 :
X ×X → C, i.e.

(1) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X;

(2) 〈λx+ µy, z〉 = λ〈x, y〉+ µ〈x, y〉 for all λ, µ ∈ C and all x, y, z ∈ X;

(3) 〈x, x〉 ∈ R>0 for all non-zero x ∈ X.

Note that (1) and (2) combines to 〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉.
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Definition 16.1. For χ, ψ ∈ C(G), define

〈χ, ψ〉 :=
1

|G|
∑
g∈G

χ(g)ψ(g)

It is easy to check that this defines an inner product on C(G).

Exercise 16.2. Show that 〈πX ,1G〉 is the number of G-orbits on the G-set X.

Recall that for g ∈ G, its centraliser subgroup is CG(g) := {h ∈ G | hgh−1 = g}, i.e. the stabiliser
subgroup of g ∈ G under conjugation (=adjoint) action of G on G itself. Recall that, by the orbit-
stabiliser theorem, we have

|G| = |CG(gi)| · |Ci|,
where Ci is a conjugacy class of G containing gi.

Example 16.3. We have

〈δi, δj〉 =
1

|G|
δi,j |Ci| =

δi,j
|CG(gi)|

, and 〈δi, χ〉 =
1

|G|
∑
g∈Ci

χ(g) =
χ(g)

|CG(gi)|
.

Proposition 16.4. Let χ, ψ ∈ C(G).

(1) If χ, ψ are characters, then 〈χ, ψ〉 = 〈ψ, χ〉 ∈ R.

(2) If g1, . . . , gr are representatives of the conjugacy classes of G, then 〈χ, ψ〉 =
r∑
i=1

χ(gi)ψ(gi)

|CG(gi)|
.

Proof (1) Since χ(g) = χ(g−1) by Lemma 13.4 (4), we have

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g−1)ψ(g) =
1

|G|
∑
h∈G

χ(h)ψ(h−1) = 〈ψ, χ〉,

where the second equality follows from taking h := g−1. But 〈χ, ψ〉 = 〈ψ, χ〉 as 〈−,−〉 is an inner
product, so 〈χ, ψ〉 ∈ R.

(2) Similar to Example 16.3, we have

〈χ, ψ〉 =
1

|G|

r∑
i=1

|G|
|CG(gi)|

χ(gi)ψ(gi) =
r∑
i=1

χ(gi)ψ(gi)

|CG(gi)|

as required.

17 Inner product vs homomorphisms

The aim of this section is the following result.

Theorem 17.1. For any CG-modules V,W , we have

〈χV , χW 〉 = dimC HomCG(V,W ).

In particular, any inner product of characters is always integer-valued.

To show this, we first consider how to extract homomorphism from the space of K-linear maps.

Note that, since HomC(V,W ) ∼= V ∗ ⊗ W and the right-hand side has CG-module structure, the
Hom-space is also a CG-module. Carefully reading the isomorphism shows that g-action is given by
(g · f)(v) = g(f(g−1v)) for all v ∈ V .
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Lemma 17.2. HomCG(V,W ) = HomC(V,W )G := {f | g · f = f}.

Proof For f ∈ HomC(V,W ), we have

f ∈ HomCG(V,W )⇔ g(f(v)) = f(gv) ∀g, v
⇔ (g · f)(v) = gf(g−1v) = g(g−1f(v)) = f(v) ∀v.

The claim now follows.

Recall that HomC(V,W ) is aG-representation, so we want to determine dimC U
G for aG-representation

U .

Lemma 17.3. For a CG-module U , we have dimC U
G = 1

|G|
∑

g∈G χU (g).

Proof Consider the element

x :=
1

|G|
∑
g∈G

g ∈ CG.

Note that (see Homework 1) |G|x is the generator of the trivial representation, and so hx = x for all
h ∈ G. Define a K-linear map π : U → U given by v 7→ xv = 1

|G|
∑

g∈G gv. Then we have

h(π(v)) = h(xv) = (hx)v = xv = π(v)

for all h ∈ G, and so π(v) ∈ UG. Since UG ⊂ U and π|UG = id, we have Im(π) = UG. In particular,
we have

dimC U
G = Tr(π) = Tr

∑
g∈G

1

|G|
ρg

 =
1

|G|
∑
g∈G

Tr ρg =
1

|G|
∑
g∈G

χU (g)

as required.

Proof of Theorem 17.1 Using Lemma 17.2 first, and then Lemma 17.3 (with U = HomC(V,W )
therein), we have

dimC HomCG(V,W ) = dimC HomC(V,W )G =
1

|G|
∑
g∈G

χ(g),

where χ is the character of HomC(V,W ). Since HomC(V,W ) ∼= V ∗ ⊗W as CG-modules, we have

χ(g) = χV ∗⊗W (g) = χV ∗(g)χW (g) = χV (g)χW (g).

Substitute this back into the previous formula yields the claim.

Corollary 17.4. Suppose that CG has r simple modules S1, . . . , Sr with characters χ1, . . . , χr respec-
tively. Then the following hold.

(1) 〈χi, χj〉 = δi,j.

(2) {χi}1≤i≤r is an orthonormal (with respect to 〈−,−〉) basis of C(G).

(3) [V : Si] = 〈χi, χV 〉 and χV =
∑r

i=1〈χi, χV 〉χi for all CG-module V .

(4) We have

〈χV , χV 〉 =

r∑
i=1

〈χi, χV 〉2

for all CG-module V .
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Proof (1) Combine Theorem 17.1 with Schur’s lemma.

(2) By (1), we have {χi}1≤i≤r is an orthonormal set of vectors in C(G). In particular, it is linear inde-
pendent. By Lemma 15.5, we have dimC C(G) = r, and so {χi}1≤i≤r is a maximal linear independent
set. Now the claim follows.

(3) Apply Theorem 17.1 to Proposition 8.5.

(4) Combines (2) and (3).

The following result which tells us that characters not only are representation-invariant, but can also
tell apart non-isomorphic representations!, i.e. a complete invariant of representations.

Theorem 17.5. For any CG-module V,W , we have V ∼= W as CG-module if and only if χV = χW .

Proof Note that the ⇒ direction is already shown in Lemma 13.4 (6). We can do both direction
simultaneously now as follows:

V ∼= W ⇔ [V : Si] = [W : Si] ∀1 ≤ i ≤ r
⇔ 〈χi, χV 〉 = 〈χi, χW 〉 ∀1 ≤ i ≤ r
⇔ χV = χW

by repeated use of Corollary 17.4 (3).
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