Ex 1.

- (i) Suppose $\rho: G \to GL(V)$ is a representation. Show that det ρ is also a representation.
- (ii) Consider the additive group of integers $G = (\mathbb{Z}, +)$. Let V be a fixed finite-dimensional \mathbb{C} -vector space. Show that every linear transformation $\phi \in \operatorname{GL}(V)$ defines a unique (but possibly isomorphic) \mathbb{C} -linear G-representation.

Ex 2.

- (i) For any finite gruop G. Let V be the 1-dimensional subspace spanned by $\sum_{g \in G} g \in KG$. Show that V is a KG-module and that $\operatorname{triv}_G \cong V$.
- (ii) Fix any $n \ge 2$. Find $v \in K \mathfrak{S}_n$ such that $\operatorname{sgn} = Kv$. (Hint: Modify the generator $\sum_{g \in G} g$ of the trivial representation.)
- (iii) Fix any $n \ge 2$ and $G = \mathfrak{S}_n$. Show that $\operatorname{Hom}_{KG}(\operatorname{triv}, \operatorname{sgn}) = 0 = \operatorname{Hom}_{KG}(\operatorname{sgn}, \operatorname{triv})$ when char $K \ne 2$; otherwise, triv \cong sgn.

Ex 3.

- (i) Let X, Y be two *G*-sets. Determine the condition(s) on a map $f : X \to Y$ so that f induces a homomorphism of permutation representations from π_X to π_Y . Do the same for isomorphism in place of homomorphism.
- (ii) Consider $G = C_3 = \langle g \mid g^3 = 1 \rangle$ action on three letters $X = \{x_1, x_2, x_3\}$ by cyclic permutation. Recall the representations $R^{(k)} : G \to \operatorname{GL}_1(\mathbb{C})$ given by $R_g^{(k)} = \omega^k$ with $\omega := \exp(2\pi i/3)$, with $k \in \mathbb{Z}/3\mathbb{Z}$. Determine (with explanation) $a, b, c \in \mathbb{Z}/3\mathbb{Z}$ so that $\mathbb{C}X \cong R^{(a)} \oplus R^{(b)} \oplus R^{(c)}$.

Ex 4.

- (i) Show that $\operatorname{Hom}_{KG}(V, W)$ is a K-vector space.
- (ii) Show that the composition of homomorphisms between representations is also a homomorphism of representations.
- (iii) Find an injective ring homomorphism $K \to Z(KG) := \{x \in KG \mid xy = yx \; \forall y \in KG\}.$
- (iv) Show that $f: V \to W$ is a homomorphism of K-linear G-representations if, and only if, it is a homomorphism of left KG-modules.

Deadline: 27th October, 2024 Submission / Enquiry: E-mail to (replace at by @) aaron.kychan at gmail.com