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Convention

Throughout the course, the symbols K,k,F will always be a field. Unless otherwise stated, we assume
(for simplicity) that

• all groups are finite;

• all vector spaces are finite-dimensional.

We compose maps from right to left.

We usually denote the identity element of a group G by 1 or 1G or idG.

1 Group action

Definition 1.1. Let G be a group and X a set. We say that G acts on X, or X is a G-set, if there
is a map ∗ : G×X → X, with gx := g ∗ x := ∗(g, x) for all g ∈ G and x ∈ X, such that

1x = x, and g(hx) = (gh)x.

Thinking about this a little bit more, one can see that the action of G on X simply just permutes the
elements of X – i.e. G is just some (sub)group of symmetries on X.

When X = V is a vector-space, if we ask for G to only acts by permuting elements, then it could very
well destroy the linearity – the best thing about linear algebra – and we lose all the toolkit from linear
algebra. The remedy is to “linearise” the definition of action.

Definition 1.2. For a vector space V , we say that G acts linearly on V if G acts on V and

g(λu+ µv) = λg(u) + µg(v)

for all g ∈ G, all λ, µ ∈ K, and all u, v ∈ V .

Often in practice we just write
Gy V

to denote the existence of linear G-action on V .

2 Linear representations

A linear g-action on V is just a linear transformation for any g ∈ G. So we can repackage the notion
of linear G-action using the following.
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Recall that the general linear group of a vector space V over K is the group of all invertible (K-)linear
transformation from V to itself.

GL(V ) := {φ : V → V | φ invertible linear transformation}.

The group multiplication is just composition of linear transformations, and the identity element is
just the identity map id : V → V .

More generally, one can consider GL(V ) for some free R-module V of finite rank for some nice ring
R – by nice, usually this would be at least an integral domain. We may look at some examples in the
case when R = Z when we focus on symmetric group representations.

Now we can reformulate the notion of linear G-action as follows.

Definition 2.1. Let G be any (not necessarily finite) group. A finite-dimensional (resp. n-dimensional)
K-linear representation of G is a group homomorphism

ρ : G→ GL(V ), g 7→ ρg,

for some finite-dimensional (resp. n-dimensional) K-vector space V . The linear transformation ρg
here is called the action of g on V .

Usually, when the underlying field (or ring) is understood, we will drop the adjective ‘K-linear’ for
representations.

Exercise 2.2. Check that representation defines a linear G-action in the sense of Definition 1.2.

While we assumed V is a vector space over a field K here, one can also consider more general setting
of “R-linear representation” when V is an R-lattice (=free R-module of finite rank).

Example 2.3. (1) The trivial representation of G is the 1-dimensional representation

trivG : G→ GL(K), g 7→ id .

(2) G = Sn the symmetric group of rank n. The sign representation of Sn is the 1-dimensional
representation

sgn : G→ GL(K), σ 7→ sgn(σ),

where sgn(σ) ∈ {±1} is the parity (or sign) of the permutation σ.

(3) Let X be a finite G-set (for any finite group G). Denote by KX the K-vector space with basis
given by X. Then

πX : G→ GL(KX), g 7→ (x 7→ gx)x∈X

defines K-linear G-representation. Any G-representation of such a form is called a permutation
representation.

Exercise 2.4. Suppose ρ : G→ GL(V ) is a representation. Show that det ρ is also a representation.

Exercise 2.5. Consider the additive group of integers G = (Z,+). Let V be a fixed finite-dimensional
C-vector space. Show that every linear transformation φ ∈ GL(V ) defines a unique (not distinguished
under isomorphism) C-linear G-representation.

Recall that for a ring R with identity 1, under addition the element 1 either has infinite or prime, say
p, order. The characteristic of R, denoted by charR, is 0 in the former case, or p in the latter.

In Example 2.3 (2), we can see that when charK = 2, then sign representation is the same as trivial
representation.

In general, changing characteristic drastically change the kind of representations that can appear.

2



• Ordinary representation theory studies K-linear representations over a field K with charK = 0.

• Modular representation theory studies K-linear representations over a field K with charK =
p > 0 and p|#G.

• Integral representation theory studies O-linear representations over a (nice – such as discrete
valuation ring) integral ring O (but sometimes including Z) with charO = 0.

The case of K-linear representations with positive characteristic that does not divide the order of
group is sometimes called “representations over good characteristics” but can also be regarded as a
‘trivial’ extension of ordinary representation theory – characteristic 0 and good characteristic cases
are somewhat the same.

Most of this course will be about ordinary representation theory. We may touch on some integral and
modular representation for the symmetric group later in the course.

3 Matrix representations

When V is n-dimensional K-vector space, then GL(V ) is isomorphic to

GLn(K) := {invertible n× n-matrices with entries in K}.

This isomorphism of course depends on a basis we pick for V .

Definition 3.1. An n-dimensional matrix representation of a group G is a group homomorphism

R : G→ GLn(K), g 7→ Rg.

We say that the matrix Rg represents the action of g.

It is clear that given an n-dimensional matrix representation, one obtains an n-dimensional K-linear
representation (with V = Kn), and vice versa (by choosing a basis for V and passes through GL(V ) ∼=
GLn(K)).

Example 3.2. Consider G = C3 = 〈x | x3 = 1〉 the cyclic group of order 3. Let us try to see what
matrix representations of G look like in the case when K = C.

Suppose that Rx ∈ GLn(C) is diagonal. Since R3
x = Rx3 = R1 = id, the diagonal entries are in

{ωk := exp(2πik/3) | 0 ≤ k < 3}, and we can write Rx = diag(ωk1 , . . . , ωkn) with any ki ∈ {0, 1, 2}
for all i = 1, . . . , n. Note that, in this case, R2

x will also be a diagonal matrix diag(ω2k1 , . . . , ω2kn).

On the other hand, if Rx is not a diagonal matrix, since Rx is invertible and we work over C, we can
still find P ∈ GLn(C) so that PRxP

−1 is diagonal. In other words, we have a commutative diagram

Cn

diag(ωik1 ,...,ωikn )
��

P

∼= // Cn

Rix
��

Cn
P

∼= // Cn,

i.e. the two paths from top left to bottom right resulting the same map. This amounts to say that, up
to a change of basis of Cn, the non-diagonal case is “essentially the same” as the diagonal one.

4 Homomorphism

In mathematics, the word for “essentially the same” is (usually) isomorphism; for this, we need the
weaker notion of homomorphism first.
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Definition 4.1. Let ρ : G → GL(V ) and θ : G → GL(W ) be two K-linear representations of G. A
homomorphism from V to W is a K-linear transformation such that the following diagram commutes

V
f //

ρg
��

W

θg
��

V
f //W

for all g ∈ G, i.e. fρg = θgf for all g ∈ G.

An isomorphism from V to W is a homomorphism that is invertible, i.e. ∃g s.t. gf = idV and
fg = idW .

Write HomKG(V,W ) for the space of all homomorphisms from V to W .

Remark 4.2. Older text also calls a homomorphism (sometimes, only for isomorphism) f : V → W
an intertwiner, or that f intertwines ρ, θ; we will try to avoid using this and stick to homomorphism.
Older text may say that V,W are equivalent if there is an isomorphism between them. We will drop
this redundant language and just say V and W are isomorphic.

Example 4.3. Let us go back to the case when G = C3 and take n = 1. We have three representations

R(i) with i = 1, 2, 3 so that R
(i)
x = ωi. An isomorphism on C is just a non-zero scalar multiplication

λ · −. As λR
(i)
x λ−1 = R

(i)
x = ωi, we have R(i) � R(j) whenever i 6= j. In fact, by the same reason, we

can see that
HomCG(R(i), R(j)) = {0}

for distinct i, j.

Exercise 4.4. Verify that (a) HomKG(V,W ) is a K-vector space, and (b) the composition of homo-
morphisms is also a homomorphism of representations.

Since HomKG(V,W ) is a K-vector space, we can just write HomCG(R(i), R(j)) = 0 in the above
example, instead of the more bulky set notation {0}.

Exercise 4.5. Consider G = C3 with generator g acting on X = {0, 1, 2} by gi = i + 1 mod 3.
Recall from Example 3.2 that 3-dimensional representation of C3 is isomorphic to a (matrix) repre-

sentation R(k1,k2,k3) : G → GL3(C) with R
(k1,k2,k3)
g = diag(ωk1 , ωk2 , ωk3). Find (k1, k2, k3) so that

CX ∼= R(k1,k2,k3).

Exercise 4.6. Let X,Y be two G-sets. Determine the condition on a map f : X → Y so that f
induces a homomorphism of permutation representations from πX to πY .

5 Group algebra

Definition 5.1. Let KG be the K-vector space with basis G, i.e. x ∈ KG⇔x =
∑

g∈G λgg with
λg ∈ K for all g ∈ G.

Define a map

KG×KG→ KG, (
∑
g∈G

λgg,
∑
h∈G

µhh) 7→
∑
g,h∈G

λgµh(gh).

It is routine to check that this defines a ring structure on KG with identity given by that of G. We
call this ring the group algebra of G over K.

Exercise. (1) Show that there is an injective ring homomorphism K → Z(KG) := {x ∈ KG | xy =
yx ∀y ∈ KG}. In other words, the group algebra KG is a K-algebra.
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(2) Let R be a commutative ring and A be another (possibility non-commutative) ring. Show that if
there is an injective ring homomorphism R→ Z(A), then any A-module is also an R-module.

Lemma 5.2. ρ : G → GL(V ) is a (finite-dimensional) K-linear representation of G if, and only if,
V has the structure of a (finite-dimensional) left KG-module.

Proof ⇒: For x =
∑

g λgg ∈ KG, v ∈ V . It is routine to check that x · v :=
∑

g λgρg(v) defines a
left KG-module structure.

⇐: From the previous exercise, we checked that there is an injective ring homomorphism K ↪→ Z(KG).
Hence, we have

(λg)(v) = g(λv)

for all g ∈ G,λ ∈ K, v ∈ V . By the axiom of module, V is an abelian group, and so there 0 ∈ V and
also well-defined addition operation. Taking g = 1 in the above equation, we get that λv ∈ V for all
λ ∈ K. Hence, V is a K-vector space.

Now for g ∈ G, define a map ρg : V → V given by v 7→ gv. We then have

g(λu+ µv) = (λg)(u) + (µg)(v) = λρg(u) + µρg(v),

and so ρg is a linear transformation. Since g−1(g(v)) = (g−1g)v = 1G · v = v, we have ρg−1ρg = id,
and so ρg ∈ GL(V ).

Finally, the axiom of module says that (gh)(v) = g(hv), which means that ρgh = ρgρh. Thus, g 7→ ρg
is a group homomorphism.

Remark 5.3. One may find in older textbooks that use terminologies like ‘the KG-module V is afforded
by ρ’ in the setting of this lemma. We will just used ρ is the representation associated/corresponding
to V , or vice versa, to keep the language simple.

Example 5.4. KG is clearly a KG-module where the (left) action is given by (left) multiplication.
Thus, we have a G-representation ρ : G → GL(KG) with ρg(

∑
h∈G λhh) :=

∑
h∈G λhgh. This repre-

sentation is usually called regular representation of G.

Exercise 5.5. Let V be the 1-dimensional subspace of KG spanned by
∑

g∈G g. Show that V is a
KG-module and that trivG ∼= V .

Lemma 5.6. f : V → W is a homomorphism of K-linear G-representations if, and only if, it is a
homomorphism of left KG-modules. Consequently, Ker(f), Im(f), W/ Im(f) are naturally K-linear
G-representations.

Proof First part: Exercise.

For the second part, just recall that the kernel, image, and quotient of image of any homomorphism
of modules are also modules.

Remark. In the language of category theory, Lemma 5.2 and 5.6 together says that the category of
finite-dimensional K-linear G-representations (where morphisms are homomorphisms) and the cate-
gory of finitely generated left KG-modules are isomorphic (note that this is stronger than just equiv-
alence of categories).

Exercise 5.7. Verify the first part of Lemma 5.6.

Exercise 5.8. Fix any n ≥ 2.

(i) Find a generator v such that sgn = Kv. (Hint: Modify the generator
∑

g∈G g of the trivial
representation.)

(ii) Show that HomKSn(triv, sgn) = 0 = HomSn(sgn, triv) when charK 6= 2; otherwise, triv ∼= sgn.
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6 Subrepresentation, indecomposable, irreducible

Definition 6.1. Let ρ : G → GL(V ) be a K-linear G-representation. A subpace W of V is G-
invariant if ρg(W ) ⊂W . In this case we call the homomorphism θ : G→ GL(W ) given by θg := ρg|W
a subrepresentation of ρ. It is non-trivial, or proper, if W is non-zero and W 6= V .

We say that ρ is irreducible (or that V is simple) if it admits no proper subrepresentation.

We will use both the terminologies irreducible and simple for representations and modules since they
are ‘the same’ notion.

Exercise 6.2. Let f : V → W be a homomorphism of representations from ρ : G → GL(V ) to
φ : G→ GL(W ). Show the following directly without using the language of KG-modules.

• Ker(f) is a G-invariant subspace of V .

• Im(f) is a G-invariant subspace of W .

Example 6.3. (1) Any 1-dimensional representation is irreducible.

(2) trivG is a 1-dimensional irreducible subrepresentation of the regular representation; see Exercise
5.5.

(3) Consider G = D6 = 〈a, b | b2 = 1 = a3, abab = 1〉 and K = C. Consider a 2-dimensional
representation ρ : G → GL(V ) so that under the basis {u, v} we have its matrix representation
form given by

a 7→
(
ω 0
0 ω−1

)
and b 7→

(
0 1
1 0

)
.

If there is a non-trivial subrepresentation, then it will be 1-dimensional spanned by w := λu+µv
for some scalar λ, µ ∈ K. Being G-invariant means that aw, bw ∈ Kw. Writing the action out:{

bw = b(λu+ µv) = µu+ λv,

aw = a(λu+ µv) = ωλu+ ω−1νv

Looking at b-action we have some c ∈ K so that cλ = µ and cµ = λ, which yields λ = ±µ.

Looking at a-action we have aw = ω−1w which means that µω−2 = µ and so µ = 0. (If we take
aw = ωw then we get λ = 0.) Hence, combining with λ = ±µ, we have λ = 0. Thus, w = 0.
This shows that there is no non-trivial G-invariant subspace and so R is irreducible.

If ρ : G→ GL(V ) is a G-representation has a subrepresentation with corresponding module W . Then
natural inclusion map W ↪→ V naturally defines an injective homomorphism of KG-module. Hence,
we know already from module theory that there is a KG-module structure on the quotient space V/W .

Definition 6.4. If φ is a subrepresentation of ρ = ρV , with corresponding KG-modules W ⊂ V
respectively, then the quotient representation is the induced homomorphism ρV/W : G → GL(V/W ),
i.e. ρV/W (g)(v +W ) := ρg(v) +W .

Exercise 6.5. Check that quotient representation is indeed a representation of G directly (without
using module theory).

Lemma 6.6 (First isomorphism theorem). Let f : V → W be a homomorphism of represen-
tations V = (V, ρ),W = (W,φ). Then the quotient representation V/Ker(f) is isomorphic to the
subrepresentation Im(f) of W .

Proof Just use first isomorphism theorem for KG-modules.
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Looking back at Example 6.3, one can see that looking at matrix really helps to determine subrepre-
sentations. Formulating this more precisely we have the following simple observation.

Lemma 6.7. Suppose W is a G-invariant subspace of V for a G-representation ρ : G → GL(V ). If
{w1, . . . , wm} is a basis of W , then we can extends it to a basis B = {v1, . . . , vk, w1, . . . , wm} of V so
that, for every g ∈ G, the matrix form Rg of ρg with respect to B is a lower block-triangular matrix

Rg =

(
∗ 0
∗ Rg|W

)
. (6.1)

For ordinary vector space, having a subspace U , we can immediately get V = U ⊕V/U , i.e. there is a
complement W of U in V such that W ∼= V/U . However, this is not true for G-representations (and
KG-modules, and also modules over a ring in general) in general.

Definition 6.8. A representation ρ : G→ GL(V ) is decomposable if there are non-trivial G-invariant
subspaces (=subrepresentations) U,W ⊂ V such that V = U ⊕W (i.e. V = U + W and U ∩W = 0
as vector spaces). In this case, we can write ρ = ρ|U ⊕ ρ|W and call U,W the direct summands of V .
If no such pair of G-invariant subspace exists, then we say that ρ is indecomposable.

We can formulate this in terms of matrices like Lemma 6.7.

Lemma 6.9. ρ = ρ|U ⊕ ρ|W if and only if there is a basis BV := {u1, . . . , um, w1, . . . , wk} so that
BU := {u1}1≤i≤m is a basis of U and BW := {wi}1≤i≤k is a basis of W , and the lower block-triangular
matrix Rg in (6.1) has the lower-left corner being 0 for all g:

RVg =

(
RUg 0

0 RWg

)
.

Here RXg is the matrix form of ρ|X with respect to the basis BX for X ∈ {V,U,W}.

The more compact way to say the right-hand side of this lemma is that ‘we can simultaneously block-
diagonalize ρg for all g’.

Of course, direct sum is not just an operation on subspaces. If we have two representations ρ : G →
GL(V ), φ : G→ GL(W ), then we have a new representation ρ⊕ φ : G→ GL(V ⊕W ) given by

(ρ⊕ φ)g(v + w) := ρg(v) + φg(w)

for any v ∈ V and w ∈W .

Exercise 6.10. If X,Y are two finite G-sets, then we have a new G-set Z := X t Y given by the
disjoint union. The associated permutation representation πZ is then the direct sum πX ⊕ πY .

Exercise 6.11. Suppose that X is a finite G-set with G-orbit decomposition X = O1t· · ·tOm. Then
we have πX = πO1 ⊕ · · · ⊕ πOm.

Some natural questions once we have the notion of indecomposable and irreducible.

Question. (1) Can we classify all irreducibles?

(2) Can we classify all indecomposables?

(3) How to build indecomposable representations from irreducibles?

(4) When does being indecomposable imply irreducible?

(5) Is there any criteria to guarantee a representation can be decomposed into a direct sum of irre-
ducibles?
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(6) Is decomposition of representation into direct sum of indecomposable direct summand unique?
That is, for a representation V with decompositions U1 ⊕ · · ·Um and W1 ⊕ · · ·Wn with Ui,Wj’s
all indecomposable, do we have m = n and σ ∈ Sn such that Ui ∼= Wσ(i)?

(7) If we ‘divide’ a representation into subquotients of irreducibles, is the resulting multi-set of
irredcuible contribution ‘unique’?

Our plan is to answer Questions (4) first – this is given by the Maschke’s theorem. And use it, and
other tools, to give answers to other questions in the case of ordinary representation theory. We will not
give any account for the case of modular representation theory, but just minor remarks here: Question
(1) has an answer similar to that of the ordinary case. Question (2) is almost always impossible (for
interested audience, search on ‘tame-wild dichotomy of representation-type’). Question (3) can only be
studied by looking at the homological algebra of KG, which is beyond the scope of this text. Question
(4) and (5) does not have any good answer in general. Question (6) and (7) actually have affirmative
answer as they are consequence of classical result in ring and module theory (namely, Krull-Schmidt
theorem and Jordan-Hölder theorem); these are also beyond the scope of this text.

Before we move on, let us have a look when the Question (4) fails.

Example 6.12. Take G = C2 = 〈g | g2 = 1〉.

First consider the case when charK 6= 2 (e.g. K = C). Recall that the trivial representation trivG ∼=
K(1 + g) is a subrepresentation of the regular representation KG. On the other hand, C2 = S2 has a
1-dimensional representation sgn ∼= K(1 − g). Clearly {1 + g, 1 − g} is a basis of KG. This yields a
direct sum decomposition

KG = K(1 + g) +K(1− g) = K(1 + g)⊕K(1− g) ∼= triv⊕ sgn .

Consider G = C2 with charK = 2 (e.g. K = F2). Consider regular representation C2 y KC2. With
respect to the canonical basis {1, g}, the matrix of g-action is given by Rg = ( 0 1

1 0 ). Suppose we can
change the basis via P =

(
a b
c d

)
to diagonalise Rg. Then Rg becomes

1

ad− bc

(
a b
c d

)(
0 1
1 0

)(
d −b
−c a

)
=

1

ad− bc

(
bd− ac a2 − b2
d2 − c2 ac− bd

)
.

Hence, we have b = ±a and d = ±c. Since we are working over characteristic 2, we just get b = a
and d = c. But in this case the above matrix becomes 0. Hence, Rg cannot be diagonalised and so
it is not a direct sum of two 1-dimensional subrepresentations. In particular, it is a 2-dimensional
indecomposable. As mentioned, triv is always a subrepresentation and so we have a 1-dimensional
subrepresentation triv of KG. One can check that the quotient representation is isomorphic to triv as
well, i.e. in pictorial form, we can write:

KG =
triv
triv

.

Exercise 6.13. Complete the argument in the example above by showing that KG/ triv ∼= triv when
charK = 2.

Exercise 6.14. Let A = K[x]/(x2) for any field K. Check that the left A-module AA is indecompos-
able, i.e. A � X ⊕ Y for some non-trivial submodules X,Y of A.
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7 Maschke’s theorem

We introduce the following notion to help talking about the Question (5) above.

Definition 7.1. A representation is completely reducible, or semisimple if it is a direct sum of
irreducible representations.

The main aim of this section is to explain the following foundational result of group representation
theory, which is the answer to Question (5).

Theorem 7.2. (Maschke) Suppose that G is finite and charK is coprime to the order of G. For any
KG-module V , every submodule U of V admits a G-invariant complement, i.e. V = U ⊕ V/U as
KG-module.

Proof Let W0 be any K-vector space complement of U in V , and π : V → V be the K-linear
projection map that projects onto U (i.e. write v ∈ V as u + w for u ∈ U,w ∈ W0, then π(v) = u).
If π is a homomorphism of KG-modules, then W0 is a KG-module and we are done by Lemma 5.6 –
unfortunately this is not true in general. So our goal is to modify π into an idempotent homomorphism.
The clever trick is to consider

p : V → V, v 7→ 1

|G|
∑
h∈G

h−1πh(v).

Let us now show that p is a KG-module homomorphism. Indeed, for any g ∈ G, we have

p(gv) =
1

|G|
∑
h∈G

h−1πh(gv) =
1

|G|
∑
h∈G

g(g−1h−1)π(hg)v = g
1

|G|
∑
h∈G

h−1πhv = gp(v).

The averaging by |G| bit seems very unnecessary so far, but we will see soon that this averaging
operation makes p a projection onto U . Indeed, first, Im(π) = U implies that Im(p) ⊂ U , and so it
remains to show that p(u) = u for all u ∈ U . Indeed, we have

p(u) =
1

|G|
∑
h∈G

h−1π h(u)︸︷︷︸
∈U

=
1

|G|
∑
h∈G

h−1h(u) =
1

|G|
∑
h∈G

u = u.

Now that we have p : V → V a KG-module projection onto U , we get that Ker(p) is a KG-submodule
of V . Hence, we have by first isomorphism theorem that V/Ker(p) ∼= Im(p) = U ⊂ V and so
V = Ker(p)⊕ U .

Corollary 7.3. Every K-linear representation of G semisimple if, and only if, charK - |G|.

Proof ⇐: Consequence of iteratively applying Maschke’s theorem (Theorem 7.2).

⇒: It is enough to show that KG is not semisimple. Suppose on the contrary that KG is semisimple.
Let a :=

∑
g g ∈ KG and V := Ka ⊂ KG. Recall that trivG ∼= V . So KG being semisimple means

that we must have KG ∼= V ⊕W for some left ideal W of KG.

Consider w =
∑

h λhh ∈W . Since W is a left ideal of KG, we have aw ∈W . On the other hand, we
also have

aw = (
∑
g

g)(
∑
h

λhh) =
∑
h

λh(
∑
g

gh) =
∑
h

λha,

which means that aw ∈ V . But V ∩W = 0 and so we must have
∑

h λh = 0, which means that

W ⊂W ′ :=

{∑
g

µgg ∈ KG

∣∣∣∣∣∑
g

µg = 0

}
.
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The space W ′ can be rewritten as the kernel of the map (a.k.a. the augmentation map) given by

ε : KG→ K,
∑
g

µgg 7→
∑
g

µg.

Thus, dimKW
′ = |G| − 1 = dimKW which means that W = W ′. However, we can also see that

ε(a) = 0, and so V ⊂W , a contradiction.

Exercise 7.4. Let G be the subgroup of GLn(C) given by{(
1 0
n 1

)
| n ∈ Z

}
Let V be the 2-dimensional C-vector space. Then we have a natural C-linear representation ρ : G →
GL(V ) given by g 7→ gv (usual applying matrix on vector). Show that V is indecomposable but not
irreducible. In particular, Maschke’s theorem fails for infinite group even for K = C.

8 Schur’s lemma

Definition 8.1. A division ring, or a skew field, is a ring whose non-zero elements are invertible.

Remark 8.2. A field is a division ring where multiplication is commutative.

The following easy yet fundamental lemma describes the relation between simple modules.

Lemma 8.3 (Schur’s lemma). Suppose S, T are simple KG-modules, then

HomKG(S, T ) =

{
a division ring, if S ∼= T ;

0, otherwise.

If, moreover, K is algebraically closed, then

dimK HomKG(S, T ) =

{
1, if S ∼= T ;

0, otherwise.

Proof We prove the first part by showing that any homomorphism f : S → T is either zero or
an isomorphism. Indeed, for f ∈ HomKG(S, T ), we have submodules Ker(f) ⊂ S and Im(f) ⊂ T .
Since S is simple, either Ker(f) = 0 or Ker(f) = S. Similarly, since T is simple, either Im(f) = T or
Im(f) = 0. Thus we have

Ker(f) = 0 Ker(f) = S

Im(f) = T f isom. impossible
Im(f) = 0 impossible f = 0.

Assume now that K is algebraically closed, and that S = T . We claim that any non-zero homomor-
phism f : S → S is given by a scalar multiple λ idS of the identity map. Indeed, K being algebraically
closed implies that f has an eigenvalue λ, and so f − λ idS is a non-invertible linear endomorphism
on S. It follows from the first part that f − λ idS = 0, and so f = λ idS .

For the case S ∼= T , we can fix any pair of isomorphisms f, g : S → T , and so g−1f : S → S is
an endomorphism. By the previous paragraph, we have g−1f = λ idS and so f = λg. Thus any
homomorphism in HomKG(S, T ) is a scalar multiple of any other non-zero homomorphism.

We will now address Question (6). We start with a preliminary lemma.

Lemma 8.4. For any finite-dimensional KG-modules U, V,W , we have
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(1) HomKG(U ⊕ V,W ) ∼= HomKG(U,W )⊕HomKG(V,W ).

(2) HomKG(U, V ⊕W ) ∼= HomKG(U, V )⊕HomKG(U,W ).

Proof Exercise (consider the natural projection map πX : X ⊕ Y → X).

Notation. For a semisimple KG-module M and a simple KG-module S, denote by [M : S] the
multiplicity of S as a direct summand, up to isomorphism, of M , i.e. the maximal number m such
that M ∼= S⊕m ⊕M ′.

Proposition 8.5 (Krull-Schmidt property). Suppose that K is algebraically closed and charK -
|G|. For a finite-dimensional KG-module M and simple KG-module S, we have

[M : S] = dimK HomKG(M,S) = dimK HomKG(S,M).

In particular, if M ∼= S1⊕· · ·Ss and M ∼= T1⊕· · ·⊕Tt are two decomposition of M into direct sum of
simple KG-modules, then we have s = t and a permutation σ ∈ St so that Si ∼= Tσ(i) for all 1 ≤ i ≤ t.

This is only a (very) special case for the Krull-Schmidt theorem, which says that the Krull-Schmidt
property (=unique decomposition into direct sum of indecomposables) holds for any finite-dimensional
K-algebras (without assumption on the field K); we provide a group representation theoretic proof of
this instead.

Proof By Maschke’s theorem, we can write M = S1⊕· · ·⊕Ss for simple modules S1, . . . , Ss. Hence,
we have

dimK HomKG(M,S) =
s∑
i=1

dimK HomKG(Si, S) = #{i ∈ [1, s] | Si ∼= S} = [M : S],

where the first equality comes from repeatedly applying Lemma 8.4, and the second comes from Schur’s
lemma. The proof for dimK HomKG(S,M) is similar. One can then show the final statement using
the formula and induction on s.

9 Representations of finite abelian groups

One application of Schur’s lemma is that it allows us to say a very useful fact about irreducible
representations of a finite abelian group.

Recall that the center of a group G is the subgroup

Z(G) := {z ∈ G | zg = gz ∀g ∈ G}.

Likewise, the center of the group algebra KG is the (commutative) subring

Z(KG) := {z ∈ KG | zx = xz ∀x ∈ KG}.

Note that it is enough to check zg = gz for all g ∈ G when calculating Z(KG). Also, we have natural
inclusion (of sets) Z(G) ↪→ Z(KG).

Exercise 9.1. If H EG is a normal subgroup of G, then
∑

h∈H h ∈ Z(KG).

Lemma 9.2. Let ρ : G→ GL(V ) be a G-representation. If V is simple and K is algebraically closed,
then for each z ∈ Z(KG), there is a canonical λV,z ∈ K× such that the assignment z 7→ λV,z restricts
to a group homomorphism ξV : Z(G)→ K×.
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Proof It is routine to check that the map

fz : V → V, v 7→ zv(:= ρz(v))

is K-linear. Since zg = gz for all g ∈ G, we have fzρg = ρgfz for all g ∈ G. Thus, fz satisfies the
condition of being a KG-homomorphism (note that this is possible without V being simple nor K
being algebraically closed).

Suppose now that V is simple and K is algebraically closed. It then follows from Schur’s lemma
(Lemma 8.3) that fz = λV,z idV for some λV,z ∈ K×. It is routine (Exercise) to check that ξV is a
group homomorphism. (More generally, Z(KG)→ K× is a semigroup homomorphism.)

Proposition 9.3. For K algebraically closed, every irreducible K-linear representation of a finite
abelian group is 1-dimensional.

Proof Let G be a finite abelian group and V a simple KG-module. As in Lemma 9.2, for each
z ∈ G = Z(G), we have fz = λV,z idV ∈ EndKG(V ) := HomKG(V, V ). Hence, for any non-zero v ∈ V ,
Kv is a non-zero G-invariant subspace of V , and so irreducibility of V implies that Kv = V .

Remark 9.4. One can prove this without so much representation theory. Just use the fact that
commuting diagonalizable matrices can be simultaneously diagonalized.

Exercise 9.5. Proposition 9.3 can fail without the algebraically closed assumption. Consider G =
C3 = 〈g | g3 = 1〉 and K be a field with charK = 0. Define a matrix G-representation R : G→ GL2(K)
given by

Rg :=

(
0 1
−1 −1

)
,

(1) Show that when K = R, R is an irreducible R-linear C3-representation.

(2) For K = C, find i, j ∈ {1, 2, 3} so that R ∼= R(i) ⊕R(j) (for the R(a)’s given in Example 4.3).

Recall that every finite abelian group G is isomorphic to the direct product Cn1 × · · ·Cnr of cyclic
groups. Also, over an algebraically closed field K, the n-th root of 1 forms the cyclic group Cn of
order n:

Cn ∼= {x ∈ K× | xn = 1K} =: µn.

Proposition 9.6. Over an algebraically closed field K with charK - |G|, A finite abelian group
G ∼= Cn1 × · · · × Cnr has exactly |G| irreducible K-linear representations, each of which is labelled by
a tuple (λ1, . . . , λr) ∈

∏r
i=1 µni.

Proof A finite abelian group G is of the form Cn1 × · · · ×Cnr . Let gi be the generator of the factor
Cni . Take an irreducible representation ρ : G → GL(V ). It follows from Lemma 9.2 Proposition
9.3 that dimK V = 1 with each gi acts by multiplying a scalar λV,i ∈ K. Since gnii = 1, we have
λniV,i = 1 ∈ µni . Thus, V 7→ (λV,1, . . . , λV,r) defines a map α from the set of (representative of)
isomorphism classes of irreducible representations

α : {irreducible representation V }/ ∼=→ µn1 × µn2 × · · · × µnr .

α injective: Suppose that (λV,i)i = (λV ′,i)i, then gi acts the same way for all i, and so V ∼= V ′.

α surjective: Given (λi)i ∈ µn1 × · · · × µnr . Define a map ρ : G → GL1(K) = K× as follows. Take
ρ(gi) := λi for all i = 1, . . . , r. In general, any g ∈ G is of the form g = ga11 · · · garr , and we define
ρ(g) := λa11 · · ·λarr . It is clear that ρ is a group homomorphism.

Remark 9.7. α fails to be injective when p := charK divides |G| as #{x ∈ K | xn = 1} < n when p|n
(note: xp − 1 = (x − 1)p over such a field). Nevertheless, a similar argument can still applies (note:
Proposition 9.3 still holds) – for example, there is only one irreducible representation over a p-group
(i.e. a group where every element has order pk for some k), namely, the trivial representation.
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Example 9.8. For G = C3 and K = C, it follows from Proposition 9.6 that the three (pairwise
non-isomorphic) irreducible 1-dimensional R(i) from Example 4.3 are all the irreducible (hence, inde-
composable, by Maschke) representations up to isomorphism.

Example 9.9. Recall that the Klein 4-group V4 is the abelian group of order 4 given by 〈a, b | a2 =
1 = b2, ab = ba〉 ∼= C2 × C2. Thus we have 4 (isomorphism classes of) irreducible representations
ρ(0,0), ρ(1,0), ρ(0,1), ρ(1,1) where

ρ(i,j) :


a 7→ (−1)i,

b 7→ (−1)j ,

ab 7→ (−1)i+j

for all i, j ∈ {1, 2}.

Proposition 9.10. Let G be a finite group and K be an algebraically closed field with charK - |G|.
If every irreducible K-linear G-representation is 1-dimensional, then G is abelian.

Proof By Maschke’s theorem (Theorem 7.2), we have KG = S1 ⊕ · · · ⊕ Sn for simple KG-modules
S1, . . . , Sn. By assumption, we have dimK Si = 1 and so we can write Si = Kvi with B := {vi}1≤i≤n
forming a K-basis of KG. Thus, with respect to this basis, the matrix of every g ∈ G of the regular
representation is a diagonal matrix and pairwise commute. Note that the regular representation
ρ : G → GL(KG) has Ker(ρ) = 1 (the matrix of ρg with respect to the canonical basis G is a non-
trivial permutation matrix for all element g 6= 1G of G), and so Im(ρ) ∼= G has pairwise commuting
elements, i.e. G is abelian.

Finally, we show one small application of representation theory on group theory – how existence of
certain type of representations guarantee a finite abelian group is cyclic.

Proposition 9.11. For a finite group G and K algebraically closed, if there is an irreducible rep-
resentation ρ : G → GL(V ) with Ker(ρ) = 1G (i.e. ρ is faithful), then the center Z(G) of G is
cyclic.

Proof Consider the group homomorphism ξV : Z(G)→ K× of Lemma 9.2. ξV (z) = 1 implies that
z acts trivially on V . Since Ker(ρ) = 1G , we have ξV (z) = 1 implies that z = 1G. Hence, ξV is
injective, which means that Im(ξV ) ∼= Z(G). Since K× is abelian and Z(G) is finite, Im(ξV ) ∼= Z(G)
is isomorphic to product of cyclic groups, say, Cpn11

× · · · × Cpnrr with pi primes.

Claim: pi’s are pairwise distinct.

Proof of Claim: Consider m := lcm(pn1
1 , . . . , pnrr ), which has m ≤ pn1

1 · · · pnrr always.

For any generator gi of the factor Cpnii
(any 1 ≤ i ≤ r), we have (gi)

p
ni
i = 1, and so (gi)

m = 1.

However, {x ∈ K× | xm = 1} is a group (under multiplication) of order at most m, and so we have
m = n = pn1

1 · · · pnrr . �

It follows from the claim and the Chinese Remainder theorem that Im(ξV ) ∼= Cn for n := pn1
1 · · · pnrr ,

and now we are done.

10 Irreducible and regular representations

Over a field in good characteristic, we have completely answered Question (1) now for finite abelian
groups in the previous section; we will give some partial progress towards Question (1) for other finite
groups now. (If you are ring theorists, then this section is just a corollary of the Artin-Wedderburn
theorem combined with Maschke’s theorem.)
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Careful audience may notice from the previous two propositions that “everything” is encoded within
the regular representation V = KG.

Lemma 10.1 (Yoneda). Let M be any KG-module. Then we have a K-vector space isomorphism
HomKG(KG,M) ∼= M .

Proof Take any m ∈ M , define a map fm : KG → M that maps x 7→ xm. It is routine to check
that this is a homomorphism of KG-modules. Now we have a K-linear map

α : M → HomKG(KG,M), m 7→ (fm : x 7→ xm).

α is injective: fm = 0 means that m = f(1KG) = 0.
α is surjective: For any f ∈ HomKG(KG,M), f is determined by the image of 1KG under f , since f
is a K-linear map, G is a basis of KG, and g(f(1)) = f(g1) = f(g) holds for all g ∈ G. Hence, f = fm
where m = f(1KG), and so α is surjective.

Remark 10.2. (1) Actually, HomKG(KG,M) can be equipped with a KG-module structure as KG is
a KG-bimodule (see later section) and the isomorphism is actually a KG-module isomorphism.

(2) For category theorist: we view KG as a category C with single object ∗ and morphisms C(∗, ∗) :=
KG. A KG-module M is the same as a functor F : C → VecK valued in the category of K-vector
spaces via F (∗) := M . Homomorphisms between KG-modules are just natural transformations of
such functors.

Proposition 10.3. Up to isomorphism, every irreducible G-representation is a quotient representation
of the regular representation.

Proof Let V be a simple KG-module and v ∈ V a non-zero element. Consider the KG-module
homomorphism fv : KG → V that maps fv(x) := xv as in Lemma 10.1. Then Im(fv) ⊂ V is a
quotient of the KG-module KG, and also a KG-submodule of V . As V is simple, and fv =6= 0, we
have Im(fv) ∼= V .

Remark 10.4. The same result actually holds without the assumption on characteristic and also holds
if we replace ‘quotient’ by ‘sub’. Under good characteristic, we can deduce the ‘sub’ version of the
lemma as Im(fv) is a direct summand of V . For the case when charK divides |G|, we can either use
the fact that KG is a so-called ‘symmetric algebra’ (meaning that (KG)∗ ∼= KG, see later section on
‘Dual representation’), which allows us to dualise a surjective homomorphism KG� V to an injective
one V ∗ ↪→ (KG)∗ ∼= KG. Then use the fact that dual representation preserves irreducibility and the
fact that dualisation is an involutive operation on the set of (isomorphism classes of) irreducible
representations.

Corollary 10.5. For a finite group G, there are only finitely many irreducible representations up to
isomorphism when charK - |G|.

Proof This is because KG is a finite-dimensional KG-module, so we can only have finitely many
quotients of KG. The claim now follows from Proposition 10.3.

Corollary 10.6. Suppose K is algebraically closed with charK - |G|. Let {S1, . . . , Sr} be the complete
set of isomorphism classes of simple KG-modules. Then we have KG-module isomorphism

KG ∼= Sd11 ⊕ · · · ⊕ S
dr
r

with di = dimK Si for all 1 ≤ i ≤ r.

Proof By Maschke’s theorem and Proposition 10.3, we have a (unique, by Krull-Schmidt property
Proposition 8.5) decomposition

KG ∼= S
[KG:S1]
1 ⊕ · · · ⊕ S[KG:Sr]

r
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of KG into a direct sum of simple modules S1, . . . , Sr with [KG : Si] ≥ 1. In fact, Proposition 8.5
already tells us that di = [KG : Si] = dimK HomKG(KG,Si). By Lemma 10.1, we have [KG : Si] =
dimK Si, and the assertion follows.

Our next goal is to relate the number r with group-theoretic information of G. On the way, we will
also show a ring-theoretic description of KG – in ring theoretic terms, what we want to do is to find
Artin-Wedderburn decomposition of KG.

Definition 10.7. Let C be a conjugacy class in G. The class sum is the element C :=
∑

g∈C g ∈ KG.

Recall that the center Z(A) := {a ∈ A | ab = ba∀b ∈ A} of a ring A is commutative.

Proposition 10.8. Suppose C1, . . . , Cr are all conjugacy classes of G. Then {C1, . . . , Cr} is a K-basis
of Z(KG).

Note that Proposition 10.8 requires no characteristic assumption.

Proof (1) Ci ∈ Z(KG) for all i: By definition, gCig
−1 = Ci for any g ∈ G, so we have gCi = Cig

which implies, by linearity, that Ci ∈ Z(KG).

(2) {Ci}i is linear independent: Simply because each g ∈ G lies in precisely one conjugacy class.

(3) Spanning: Suppose that v =
∑

g λgg ∈ Z(KG). Then for all h ∈ G we have

v = hvh−1 =
∑
g

λghgh
−1 =

∑
k∈G

λh−1khk.

Hence, as G is the basis of KG, comparing coefficients yields λg = λhgh−1 for all g, h ∈ G. In other
words, λg is constant over the conjugacy class containing g. This means that v is in the span of
{Ci}i=1,...,r.

Lemma 10.9. Let Matn(K) be the ring of n × n-matrices. Then we have a ring isomorphism
Z(Matn(K)) ∼= K.

Proof There is a map K → Z(Matn(K)) given by λ 7→ λ id; it is routine to check that this is a ring
isomorphism (Exercise).

Definition 10.10. For rings A,B, we have a new ring A × B called the direct product of A and B
given by the usual Cartesian product on the underlying set with multiplication (a, b)(a′, b′) := (aa′, bb′).

Exercise 10.11. (i) Show that there is a ring isomorphism EndA(A)op ∼= A for any ring A, where,
for a ring Λ
• EndΛ(X) := HomΛ(X,X) is the endomoprhism ring of Λ-module X with multiplication

given by composition of maps, and

• Λop is the opposite ring of a ring Λ with multiplication a ·op b := b · a.

(ii) Show that Z(A×B) = Z(A)× Z(B).

(iii) Suppose M,N are A-modules with HomA(M,N) = 0 = HomA(N,M). Show that EndA(M ⊕
N) = EndA(M)× EndA(N).

(iv) Suppose S is a simple KG-module over an algebraically closed field K. Show that there is a ring
isomorphism EndKG(S⊕m)op ∼= Matm(K).

Theorem 10.12. Over an algebraically closed field K with charK - |G|, we have a ring isomorphism

KG ∼= Matd1(K)× · · · ×Matdr(K),

where Matn(K) is the ring of n× n-matrices over K, and r is the number of conjugacy classes of G.
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Proof We have ring isomorphisms

(KG)op ∼= EndKG(KG) by Ex 10.11(i)

∼= EndKG(Sd11 ⊕ · · · ⊕ S
dr
r ) by Cor 10.6

∼= EndKG(Sd11 )× · · · × EndKG(Sdr) by Schur’s lemma + Ex 10.11(iii)
∼= Matd1(K)× · · · ×Matdr(K) by Exercise 10.11(iv).

Note that Matd(K)op ∼= Matd(K). Hence, we can apply Lemma 10.9 and Exercise 10.11 (ii) to get
the following ring isomorphisms

Z(KG) ∼= Z
(

Matd1(K)× · · ·Matdr(K)
) ∼= Z(Matd1(K))× · · · × Z(Matdr(K)) ∼= K × · · · ×K.

In particular, we have r = dimK Z(KG), which is the same as the number of conjugacy classes in G
by Proposition 10.8.

Remark 10.13. For K algebraically closed with charK = p > 0, the number of isoclasses of simple
KG-modules coincides with the p′-conjugacy classes, i.e. conjugacy class C such that p does not
divides |C|. The proof is much more involved and require closer comparison bewteen KG/ radKG
and Z(KG), where radKG is the Jacobson radical of KG.

Exercise 10.14. Recall from Example 6.3 that there is a 2-dimensional irreducible representation V2

of G = D6 = 〈a, b | a3 = 1 = b2〉.
(1) Find u, v ∈ KG so that the K{u, v} is the subrepresentation of KG that is isomorphic to V2.

(2) Find a basis {v1, v2, . . . , v6} of KG so that

KG ∼= K{v1} ⊕K{v2} ⊕K{v3, v4} ⊕K{v5, v6}

as KG-module. Describe each of these subrepresentations (by their name/action).

11 Dual space

Recall that the (K-)dual space V ∗ of a K-vector space V is the vector space given by linear 1-form

V ∗ := HomK(V,K) = {linear map f : V → K}.

Let ρ : G → GL(V ) be a K-linear G-representation. For any g ∈ G and K-linear map α ∈ V ∗ :=
HomK(V,K), consider the following map

ρ∗g(α) : V → K, v 7→ α ◦ ρg−1(v) = α(g−1v).

Clearly, ρ∗g : V ∗ → V ∗ given by α 7→ ρ∗g(α) is a K-linear map.

Lemma 11.1. For a representation ρ : G→ GL(V ). Then ρ∗ : G→ GL(V ∗) given by g 7→ ρ∗g is also
a G-representation.

Proof (1) ρ∗g ∈ GL(V ∗): We have

ρ∗g−1ρ
∗
g(α) = ρ∗g−1(α ◦ ρg−1) = (α ◦ ρg−1) ◦ ρg = α ◦ (ρg−1 ◦ ρg) = α.

Note that, in particular, we have (ρ∗g)
−1 = ρ∗g−1 .
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(2) ρ∗ is a group homomorphism: Clearly ρ∗1G = idV ∗ . We check ρ∗gh−1 = ρ∗gρ
∗
h−1 . Take α ∈ V ∗, then

we have

ρgh−1 ∗ (α) = α ◦ ρ(gh−1)−1 = α ◦ ρhg−1

= α ◦ (ρhρg−1) = (α ◦ ρh) ◦ ρg−1

=
(
ρ∗h−1(α)

)
◦ ρg−1

= ρ∗g(ρ
∗
h−1(α))

= (ρ∗g ◦ ρ∗h−1)(α)

Remark 11.2. Consider any matrix representation R : G → GLn(K) associated to ρ : G → GL(V )
with respect to a basis B = {v1, . . . , vn} of V . Let B∗ be the dual basis of V ∗, i.e. B∗ = {α1, . . . , αn}
with αi(vj) = δi,j . Then the matrix representation R∗ associated to ρ∗ with respect to B∗ has action
matrix R∗g given by the transpose Rtg−1 of Rg−1 .

Although V ∗ ∼= V for any (finite-dimensional) K-vector space, this generally does not lift to an
isomorphism of KG-modules.

Example 11.3. Consider the 1-dimensional representation R(k) of C3 where the generator g acts as
(multiplying )ωk = exp(2kπi/3). Then (R(1))∗ ∼= R(2) and (R(0))∗ ∼= R(0).

Definition 11.4. A KG-module V is self-dual if V ∗ ∼= V as KG-modules.

Exercise. Trivial representation and sign representation are both self-dual.

Proposition 11.5. The regular representation is self-dual.

Proof KG has K-linear basis G. The canonical (dual) basis of (KG)∗ is given by {αg | g ∈ G}
where αg(h) := δg,h, i.e. αg(g) = 1 and αg(h) = 0 for all h ∈ G \ {g}.

Consider the K-linear map α : KG → (KG)∗ given by linearly extending g 7→ αg. This is clearly a
K-vector space isomorphism. So we only need to show that α is a KG-module homomorphism. For
any g, h, k ∈ G, we have

(hα(g))(k) = (h · αg)(k) = αg(h
−1k) = δg,h−1k = δhg,k = αhg(k) = (α(hg))(k).

This shows the claim.

Remark. In ring theory, this is the same as saying that KG is self-injective. In fact, KG is a symmetric
Frobenius algebra, meaning that (KG)∗ ∼= KG as a KG-KG-bimodule.

Definition 11.6. Let f : V →W be a homomorphism of KG-modules. Define f∗ : W ∗ → V ∗ by

f∗(α)(v) := α(f(v))

for all α ∈W ∗ and v ∈ V .

Lemma 11.7. f∗ is a homomorphism of KG-modules. Moreover, it maps surjective homomorphism
to injective ones, and vice versa.

Proof Exercise.

Lemma 11.8. If V is a simple KG-module, then so is V ∗.

Proof Take the smallest non-trivial quotient KG-module U of V ∗, then U is necessary simple
and we have a non-zero surjective homomorphism V ∗ � U . Dualising yield a non-zero injective
homomorphism U∗ ↪→ V . Since V is simple, we have U∗ ∼= V , which means that V ∗ ∼= U is simple.
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Proposition 11.9. Every irreducible representation is, up to isomorphism, a subrepresentation of the
regular representation.

Proof Combine Proposition 10.3 and Lemma 11.8.

12 Tensor product

Definition 12.1. Let V,W be finite-dimensional K-vector space with bases, say, B, C respectively.
Then the tensor product V ⊗KW (or simplifies to V ⊗W if context is clear) is the finite-dimensional
K-vector space with basis given by

{v ⊗ w | v ∈ B, w ∈ C}.

Suppose B = {v1, . . . , vm} and B = {w1, . . . , wn}. Then for v =
∑

i λivi and w =
∑

j λjwj , we can use
the short-hand

v ⊗ w :=
∑
i,j

λiµj(vi ⊗ wj) ∈ V ⊗W.

Lemma 12.2. Consider λ ∈ K, v, v′ ∈ V and w,w′ ∈W . Then we have the following.

(1) (λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw).

(2) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w.

(3) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′.

Proof These are simple algebraic rewriting of symbols. For example, taking basis B, C as before,
the first equality of (1) is just

(λv)⊗ w = λ(
∑
i

λivi)⊗ (
∑
j

µjwj) =
∑
i,j

λλiµj(vi ⊗ wj) = λ
∑
i,j

λiµj(vi ⊗ wj) = λ(v ⊗ w).

etc.

Be very careful that there are elements V ⊗W that can not be written in the form of v⊗w for v ∈ V
and w ∈W . In particular, one common newbie mistake is to regard the following distinct elements as
the same:

v1 ⊗ w1 + v2 ⊗ w2 6= (v1 + v2)⊗ (w1 + w2).

The right-hand side is really v1 ⊗ w1 + v1 ⊗ w2 + v2 ⊗ w1 + v2 ⊗ w2.

Lemma 12.3. The space V ⊗K W does not depend on the choice of basis on V and W .

Proof Take any other basis {v′1, . . . , v′m} of V and {w′1, . . . , w′n} of W , with change of basis

vi =
∑
k

αk,iv
′
k and wj =

∑
l

βl,jw
′
l.

Then
vi ⊗ wj =

∑
k,l

αk,iβl, jv
′
k ⊗ w′l.

Hence, {v′k ⊗ w′l}k,l spans V ⊗K W , and this spanning set has size the mn; thus, it is a basis.

One can define V ⊗KW in a basis-free way. Notice that if we write v⊗w as 〈v, w〉, then the ‘relations’
in Lemma 12.2 says that 〈−, ?〉 is like a “bilinear form without value”. This can be phrased more
precisely as follows.

18



Lemma 12.4. Given any bilinear form b := 〈−, ?〉 : V ×W → K, there is always a unique K-linear
map θb : V ⊗K W → K so that the following diagram commutes:

V ×W ∀b=〈−,?〉
++

��
K

V ⊗K W
∃!θb

33

where the vertical map is given by (v, w) 7→ v ⊗ w.

More generally, we can replace K by any vector space U in the statement above, and ‘bilinear form’
replaced by bilinear map, i.e. map that is linear in both the V -component and W -component of
V ×W .

Proof Clear from Lemma 12.2 and the definition of v ⊗ w that θb(v ⊗ w) := 〈v, w〉 is the desired
(K-linear) map.

The universal property of tensor product says that for any vector space U that satisfies the property:

• suppose there is a bilinear map V ×W → T such that, for all bilinear map b : V ×W → U ,
there is a K-linear map f : T → U so that b = fa:

V ×W ∀b: bilinear

++
bilinear

��
K

T ∃θb: linear

33

then T ∼= V ⊗K W .

In more advanced texts, tensor products are most probably defined using universal property, and
one shows that it does exists and is unique (up to unique(!) isomorphism). Since we concerns only
finite-dimensional vector spaces, a more practical approach via basis is (likely) easier to understand.

The following innocent looking isomorphisms are arguably the most used isomorphisms in homological
algebra.

Lemma 12.5. For any finite-dimensional K-vector spaces U, V,W , the following hold.

(1) V ∗ ⊗K W ∼= HomK(V,W ).

(2) HomK(U ⊗K V,W ) ∼= HomK(U,HomK(V,W )).

Proof (1) Let B = {v1, . . . , vm}, C = {w1, . . . , wn} be bases of V,W respectively. Let B∗ =
{f1, . . . , fm} be the canonical dual basis, i.e. fi(vj) = δi,j for all 1 ≤ i, j ≤ m.

Define θ(fi⊗wj) to be the K-linear map that extends vk 7→ fi(vk)wj ∈W and check that θ is K-linear.

Conversely, for α ∈ HomK(V,W ), let φ(α) :=
∑

i fi ⊗ α(vi). Check that φ and θ are inverse to each
other.

(2) Define
θ : HomK(U ⊗ V,W )→ HomK(U,HomK(V,W )), f 7→ θf ,

where θf (u) : V →W is the map that sends v ∈ V to f(u⊗ v) ∈W .

Define also
φ : HomK(U,HomK(V,W ))→ HomK(U ⊗ V,W ), f 7→ φf ,

where φf (u⊗ v) := (f(u))(v). Check that φ and θ are inverse to each other.
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Remark 12.6. The isomorphism (1) absolutely require finite-dimensionality. This property also pro-
vides a way to interpret the tensor product space as the space of linear transformation (matrices). The
isomorphism (2) is called ‘currying’ in computer science, coined from Curry-Howard correspondence.
This isomorphism is actually natural, and yields an adjoint pair (−⊗K V,HomK(V,−)) of functors.

Example 12.7. Consider A = (ai,j)1≤i,j≤m ∈ Matm(K) and B ∈ Matn(K) and defines (what is
sometimes called Kronecker product of matrices)

A⊗B :=


a1,1B a1,2B · · · a1,mB

a2,1B
. . . a2,mB

...
. . .

...
am,1B am,2B · · · am,mB

 .

Then we have an isomorphism of algebras

Matm(K)⊗K Matn(K)→ Matmn(K), (A,B) 7→ A⊗B.

From this, we can see that (A ⊗ B)−1 = A−1 ⊗ B−1, if (and only if) both A,B are invertible. Thus,
the isomorphism restricts to a group isomorphism GL(K⊕m)⊗K GL(K⊕n) ∼= GL(K⊕mn).

Exercise 12.8. (1) Show that for finite groups G,H, KG ⊗K KH has a canonical ring structure
so that KG⊗K KH ∼= K(G×H) as rings.

(2) Show that KG⊗K (KG)op has a canonical ring structure so that KG⊗K (KG)op ∼= K(G×G)
as rings. Here Rop denotes the opposite ring of a ring R whose underlying set is the same as R
but has multiplication a ·op b := ba.

One thing that makes group algebras special is that we can always ‘tensor within the category of
G-representations’:

Proposition 12.9. For any KG-modules V,W , we have a KG-module V ⊗K W where the action of
g is given by v ⊗ w 7→ gv ⊗ gw.

Proof Let B, C be the K-linear bases of V,W respectively and consider their respective repre-
sentations ρ : G → GL(V ) and φ : G → GL(W ). Consider the associated matrix representations
[ρ]B : G→ Matm(K) and [φ]C : G→ Matn(K). Define a map

Ψ : G→ Matmn(K) = Matm(K)⊗Matn(K), g 7→ [ρg]B ⊗ [φg]C ,

where we are using the Kronecker product of Example 12.7 to define Ψ(g). One can check that Ψ is a
group homomorphism (hence, a matrix representation of G); by construction, we have g ∈ G acts on
V ⊗W by v ⊗ w 7→ gv ⊗ gw.

Exercise 12.10. Show that trivG⊗KV ∼= V ∼= V ⊗K trivG for all KG-module V .

Detour: Even in good characteristics, tensor products of group (or Hopf algebra in general) represen-
tations is still active theme of researches - one typical theme of problem is: For KG-modules V,W ,
describes the indecomposable direct summands of V ⊗K W .

For example, in the representation theory of symmetric groups (its generalisations such as the Hecke
algebra), the Mullineux problem asks for the description of V ⊗K sgn for each irreducible V . Another
example is McKay correspondence (which has deep implications in algebraic geometry) which comes
from looking at representations of finite subgroups of SL2(C) and relate them under tensoring with
the natural representation (SL2 matrix multiplying on vectors).

Exercise 12.11. For KG-module V,W , show that there are the following isomorphisms.

(1) (V ⊗K W )∗ ∼= V ∗ ⊗K W ∗ as KG-modules.
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(2) V ∗ ⊗K W ∼= HomK(V,W ) as KG-modules.

Exercise 12.12. Suppose X is a G-set (i.e. G acts by permuting elements of X) or a KG-module,
denote by XG the invariant subspace {x ∈ X | gx = x ∀g ∈ G} of X. Let U, V,W ∈ KGmod.

(1) Show that (V ∗ ⊗K V )G ∼= EndKG(V ).

(2) Show that HomKG(U ⊗K V,W ) ∼= HomKG(U, V ∗ ⊗K W )

Exercise 12.13. Show that, for G-representations V,W , there is an isomorphism HomK(V,W ) ∼=
V ∗ ⊗K W of G-representations.

13 Character

From now on until further notice, we take K = C.

Definition 13.1. Let ρ be a representation of G over C, and V be its corresponding CG-module.
Then the (ordinary) character of ρ (or of V ) is the map

χρ = χV : G→ C, g 7→ Tr(ρ(g)),

where Tr is the trace function (i.e. sum of all eigenvalues/‘diagonal entries’). A character χρ is
irreducible if the associated representation ρ is irreducible.

In the literature, when χ is the character of ρ, then one often says that ρ or V affords χ; we will just
use ‘associated to’ instead for simplicity.

Note that the character of a 1-dimensional representation is just itself. In some geometry-oriented
texts, a character is used as a synonym for 1-dimensional representation. The term ‘character’ has a
different definition when considered for representation of Lie groups or Lie algebras; but the essential
idea is still somewhat the same - it is a gadget that records the eigenvalues of action.

Definition 13.2. The degree of a character χV is dimC V .

In some literature, degree 1 character are also called linear character; we will avoid this terminology.

Example 13.3. When ρ = trivG, write 1G for its character and call it the trivial character. This is
a degree 1 irreducible character.

In the following, for z = a+ ib ∈ C, denote by z its conjugate a− ib.

Lemma 13.4. Let χ = χV be the character of CG-module V .

(1) degχ := dimC V = χ(1).

(2) χV is constant on each conjugacy class of G.

(3) χ(g) is a sum of m-th roots of unity if g ∈ G is of order m.

(4) χ(g−1) = χ(g) for any g ∈ G of finite order.

(5) χ(g) ∈ R if g and g−1 is in the same conjugacy class.

(6) χV = χW if V ∼= W are isomorphic CG-modules.

Proof (1) Clear since χ(1) = Tr(idV ).

(2) Since Tr(fg) = Tr(gf) for any linear transformations f, g. We have Tr(ρhgh−1) = Tr((ρhρg)ρ
−1
h ) =

Tr(ρ−1
h ρhρg) = Tr(ρg).
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(3) gm = 1G implies that ρmg = idV , and so λm = 1 for every eigenvalue λ of ρg.

(4) Suppose λ1, . . . , λn are the eigenvalues (counted with multiplicity, i.e. n = dimC V ) of ρg. Since
these are roots of unity, we have λ−1

i = λ. Hence,

χV (g−1) =
n∑
i=1

λ−1
i =

n∑
i=1

λi = χV (g).

(5) Consequence of (2) and (4).

(6) Suppose f : V → W is a CG-module isomorphism. Then we have fρgf
−1 = φg for ρ, φ the

representations corresponding to V,W respectively. Now we have

χW (g) = Tr(φg) = Tr(fρgf
−1) = Tr(ρg) = χV (g).

Exercise 13.5. Show that for a character χ = χV , Kerχ := {g ∈ G | χ(g) = χ(1)} is a normal
subgroup of G.

Exercise 13.6. Show that
∑

i χi(1)2 = |G| where the sum is over all irreducible characters.

14 Characters of various constructions

Recall that we can take direct sum and tensor products of representations, which behaves like addition
and multiplication respectively. Indeed, this is the case forK-vector spaces, namely, that dimKmod→
Z ‘sends’ ⊕ to + and ⊗ to ×. Note that C = C1 is the group algebra of the trivial group, and so
character of C1 is nothing but just the degree of the character, i.e. dimC by Lemma 13.4 (3). Hence,
it makes sense to view characters as a generalisation of dimC.

Lemma 14.1 (Character of direct sum). For two CG-modules V,W , we have χV⊕W = χV +χW .

Proof Consequence of Lemma 6.9.

If ρ = πX is a permutation representation associated to G-set X, then χρ is called permutation
character; in this case, by abuse of notation we write πX for χπX .

Lemma 14.2 (Permutation character). For all g ∈ G and any G-set X, we have πX(g) = #Xg,
where Xg := {x ∈ X | gx = x} is the set of g-fixed points.

Proof Consider the matrix corresponding to g-action with respect to the basis X. Then a diagonal
entry, say, corresponding to x ∈ X is non-zero if, and only if, gx = x. Moreover, in such a case, the
entry is exactly 1.

Exercise 14.3. Suppose CG has r conjugacy classes. Prove that πG =
∑r

i=1 deg(χi)χi, where χi = χSi
is the character of a simple CG-module such that Si � Sj for all i 6= j. Moreover, determine the value
χV (g) for all g ∈ G.

Recall that for a representation ρ : G→ GL(V ), we have a dual representation ρ∗ : G→ GL(V ∗).

Lemma 14.4 (Character of dual representation). For any g ∈ G, χV ∗(g) = χV (g) = χV (g−1).
In particular, we have the following:

(1) If V is self-dual, then its character χV is real-valued.
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(2) If χ = χV is irreducible, then so is χ.

Proof Since ρ∗(g) = (ρ(g−1))T by definition, the claim follows from Lemma 13.4 (4).

(1) now follows from the definition of self-dual and Lemma 13.4 (4): V ∼= V ∗ implies that χV (g) =
χV ∗(g) = χV (g).

(2) follows from Lemma 11.8.

Lemma 14.5 (Character of tensor product). Let V,W be two CG-modules. For any g ∈ G, we
have χV⊗W (g) = χV (g)χW (g).

Proof This follows from the fact that the matrix form of ρV⊗W (g) is the Kronecker product (Ex-
ample 12.7) of those of ρV (g) and ρW (g).

15 Class functions

Definition 15.1. A class function on G is a C-valued function ψ : G→ C that is constant over each
conjugacy class, i.e. ψ(g) = ψ(h) whenever g and h are in the same conjugacy class. Denote by C(G)
the set of all class functions on G.

For ψ, φ ∈ C(G) and λ ∈ C, define:

(1) λφ the class function given by (λφ)(g) := λ(φ(g));

(2) ψ + φ the class function given by pointwise addition (i.e. (ψ + φ)(g) := ψ(g) + φ(g));

(3) ψφ the class function given by pointwise multiplication (i.e. (ψφ)(g) := ψ(g)φ(g)).

In particular, C(G) is a C-vector space (and a C-algebra).

From now on, unless otherwise specified, unadorned ⊗ means ⊗C.

Lemma 15.2. A character is a class function on G.

Proof Immediate from Lemma 13.4 (2).

Exercise 15.3. Write χV the function g 7→ χV (g). Show that χHomC(V,W ) = χV χW .

For ease of exposition, we take G = C1 t . . . t Cr the decomposition of G into conjugacy classes. We
also take representatives g1, . . . , gr with gi ∈ Ci, and assume always that g1 = 1G.

Definition 15.4. The characteristic function δj associated to conjugacy class Cj is the class function
given by

δj(g) :=

{
1, g ∈ Cj ;
0, g /∈ Cj .

Lemma 15.5. dimC C(G) is the number of conjugacy classes of G.

Proof Suppose there are r conjugacy classes of G. Then it follows from Lemma 13.4 (2) that
{δ1, . . . , δr} form a basis of C(G).

Recall that there are exactly the number of (isomorphism classes of) irreducible representations also
coincide with the number of conjugacy classes of G.
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Definition 15.6. Let χ1, . . . , χr be the irreducible characters of G. The character table of G is the
matrix (χi(gj))1≤i,j≤r.

In practice, we draw the character table with a heading row labelled by the conjugacy classes (or their
representatives) and a heading column labelled by the irreducible characters.

The usual convention also takes the first row to be the trivial character χ1 = χtriv (and so the first
row is just a row of 1’s), and the first column to be the conjugacy class C1 = {1} (and so the first
column tells us the dimension of each irreducible representation). In the symmetric group case, it is
also usual to take the second row to be the character associated to the sign representation χ2 = χsgn.

Example 15.7 (Character table of Cn). Each element of Cn = 〈g | gn = 1〉 is a conjugacy classes
of its own. From our previous study on irreducible representations of finite abelian group, we can take
χk, with 1 ≤ k ≤ n, to be the character of the irreducible representation where g acts by ξk−1 for
ξ := exp(2πi/n).

Hence, the character table is of the form

1 g gj(1 ≤ j ≤ n)

χ1 1 1 1

χ2 1 ξ ξj

χk 1 ξk ξkj

Example 15.8 (Character table of D6
∼= S3). We have D6 = 〈a, b | a3 = 1 = b2, abab = 1〉. There

are three conjugacy classes

C1 = {1}, C2 = {b, ab, a2b}, C3 = {a, a2}.

We have also seen three irreducible representations: trivial, sign, and a 2-dimensional representation
(Example 6.3(3)) given by

a 7→
(
ω 0
0 ω−1

)
and b 7→

(
0 1
1 0

)
.

Then we have the following character table.

1 b a

χ(3) 1 1 1

χ(13) 1 −1 1

χ(2,1) 2 0 −1

Here we use a slightly weird labelling of the irreducible characters. They correspond to the partitions
of the number 3.

16 Inner product on class functions

We now take a closer look to the space C(G) of class functions.

Recall that an inner product on a C-vector space X is a non-degenerate Hermitian form 〈−,−〉 :
X ×X → C, i.e.

(1) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X;

(2) 〈z, λx+ µy〉 = λ〈z, x〉+ µ〈z, y〉 for all λ, µ ∈ C and all x, y, z ∈ X;

(3) 〈x, x〉 ∈ R>0 for all non-zero x ∈ X.

Note that (1) and (2) combines to 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉.
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Definition 16.1. For χ, ψ ∈ C(G), define

〈χ, ψ〉 :=
1

|G|
∑
g∈G

χ(g)ψ(g)

It is easy to check that this defines an inner product on C(G).

Exercise 16.2. Show that 〈πX ,1G〉 is the number of G-orbits on the G-set X.

Recall that for g ∈ G, its centraliser subgroup is CG(g) := {h ∈ G | hgh−1 = g}, i.e. the stabiliser
subgroup of g ∈ G under conjugation (=adjoint) action of G on G itself. Recall that, by the orbit-
stabiliser theorem, we have

|G| = |CG(gi)| · |Ci|,
where Ci is a conjugacy class of G containing gi.

Example 16.3. We have

〈δi, δj〉 =
1

|G|
δi,j |Ci| =

δi,j
|CG(gi)|

, and 〈δi, χ〉 =
1

|G|
∑
g∈Ci

χ(g) =
χ(g)

|CG(gi)|
.

Proposition 16.4. Let χ, ψ ∈ C(G).

(1) If χ, ψ are characters, then 〈χ, ψ〉 = 〈ψ, χ〉 ∈ R.

(2) If g1, . . . , gr are representatives of the conjugacy classes of G, then 〈χ, ψ〉 =
r∑
i=1

χ(gi)ψ(gi)

|CG(gi)|
.

Proof (1) Since χ(g) = χ(g−1) by Lemma 13.4 (4), we have

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g−1)ψ(g) =
1

|G|
∑
h∈G

χ(h)ψ(h−1) = 〈ψ, χ〉,

where the second equality follows from taking h := g−1. But 〈χ, ψ〉 = 〈ψ, χ〉 as 〈−,−〉 is an inner
product, so 〈χ, ψ〉 ∈ R.

(2) Similar to Example 16.3, we have

〈χ, ψ〉 =
1

|G|

r∑
i=1

|G|
|CG(gi)|

χ(gi)ψ(gi) =
r∑
i=1

χ(gi)ψ(gi)

|CG(gi)|

as required.

17 Inner product vs homomorphisms

The aim of this section is the following result.

Theorem 17.1. For any CG-modules V,W , we have

〈χV , χW 〉 = dimC HomCG(V,W ).

In particular, any inner product of characters is always integer-valued.

To show this, we first consider how to extract homomorphism from the space of K-linear maps.

Note that, since HomC(V,W ) ∼= V ∗ ⊗ W and the right-hand side has CG-module structure, the
Hom-space is also a CG-module. Carefully reading the isomorphism shows that g-action is given by
(g · f)(v) = g(f(g−1v)) for all v ∈ V .
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Lemma 17.2. HomCG(V,W ) = HomC(V,W )G := {f | g · f = f}.

Proof For f ∈ HomC(V,W ), we have

f ∈ HomCG(V,W )⇔ g(f(v)) = f(gv) ∀g, v
⇔ (g · f)(v) = gf(g−1v) = g(g−1f(v)) = f(v) ∀v.

The claim now follows.

Recall that HomC(V,W ) is aG-representation, so we want to determine dimC U
G for aG-representation

U .

Lemma 17.3. For a CG-module U , we have dimC U
G = 1

|G|
∑

g∈G χU (g).

Proof Consider the element

x :=
1

|G|
∑
g∈G

g ∈ CG.

Note that (see Homework 1) |G|x is the generator of the trivial representation, and so hx = x for all
h ∈ G. Define a K-linear map π : U → U given by v 7→ xv = 1

|G|
∑

g∈G gv. Then we have

h(π(v)) = h(xv) = (hx)v = xv = π(v)

for all h ∈ G, and so π(v) ∈ UG. Since UG ⊂ U and π|UG = id, we have Im(π) = UG. In particular,
we have

dimC U
G = Tr(π) = Tr

∑
g∈G

1

|G|
ρg

 =
1

|G|
∑
g∈G

Tr ρg =
1

|G|
∑
g∈G

χU (g)

as required.

Proof of Theorem 17.1 Using Lemma 17.2 first, and then Lemma 17.3 (with U = HomC(V,W )
therein), we have

dimC HomCG(V,W ) = dimC HomC(V,W )G =
1

|G|
∑
g∈G

χ(g),

where χ is the character of HomC(V,W ). Since HomC(V,W ) ∼= V ∗ ⊗W as CG-modules, we have

χ(g) = χV ∗⊗W (g) = χV ∗(g)χW (g) = χV (g)χW (g).

Substitute this back into the previous formula yields the claim.

Corollary 17.4. Suppose that CG has r simple modules S1, . . . , Sr with characters χ1, . . . , χr respec-
tively. Then the following hold.

(1) 〈χi, χj〉 = δi,j.

(2) {χi}1≤i≤r is an orthonormal (with respect to 〈−,−〉) basis of C(G).

(3) [V : Si] = 〈χi, χV 〉 and χV =
∑r

i=1〈χi, χV 〉χi for all CG-module V .

(4) We have

〈χV , χV 〉 =

r∑
i=1

〈χi, χV 〉2

for all CG-module V .
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Proof (1) Combine Theorem 17.1 with Schur’s lemma.

(2) By (1), we have {χi}1≤i≤r is an orthonormal set of vectors in C(G). In particular, it is linear inde-
pendent. By Lemma 15.5, we have dimC C(G) = r, and so {χi}1≤i≤r is a maximal linear independent
set. Now the claim follows.

(3) Apply Theorem 17.1 to Proposition 8.5.

(4) Combines (2) and (3).

The following result which tells us that characters not only are representation-invariant, but can also
tell apart non-isomorphic representations!, i.e. a complete invariant of representations.

Theorem 17.5. For any CG-module V,W , we have V ∼= W as CG-module if and only if χV = χW .

Proof Note that the ⇒ direction is already shown in Lemma 13.4 (6). We can do both direction
simultaneously now as follows:

V ∼= W ⇔ [V : Si] = [W : Si] ∀1 ≤ i ≤ r
⇔ 〈χi, χV 〉 = 〈χi, χW 〉 ∀1 ≤ i ≤ r
⇔ χV = χW

by repeated use of Corollary 17.4 (3).

Example 17.6. Consider G = C3 = 〈g | g3 = 1〉. Let ρ, ρ′ be representations given by

ρg =

(
ω 0
0 ω−1

)
, ρ′g =

(
0 1
−1 −1

)
.

Then we have χρ(1) = 2 = χρ′(1), χρ(g) = −1 = χρ′(g), and χρ(g
2) = −1 = χρ′(g

2). Hence, we have
ρ ∼= ρ′. This is much more difficult to see on the level of representation or CG-module as one needs
to find an appropriate change of basis.

We see one application of our above investigation.

Corollary 17.7. Suppose V,W are simple CG-modules with dimCW = 1. Then V ⊗W is also a
simple CG-module.

Proof By Corollary 17.4, it suffices to show that 〈χV⊗W , χV⊗W 〉 = 1. First note that, as W is
1-dimensional, the character χW of W is exactly the representation ρ : G → C× associated to W .
In particular, we have χW (g) = χW (g−1) = ρ(g−1) = ρ(g)−1, which implies that χW (g)χW (g) =
ρ(g)−1ρ(g) = 1. Now we just need to compute the inner product

〈χV⊗W , χV⊗W 〉 = 〈χV χW , χV χW 〉

=
1

|G|
∑
g∈G

χV (g)χW (g)χV (g)χW (g)

=
1

|G|
∑
g∈G
|χW (g)|2χV (g)χV (g)

=
1

|G|
∑
g∈G

χV (g)χV (g) = 〈χV , χV 〉 = 1,

as required.
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18 Orthogonality theorems

Theorem 18.1 (Row orthogonality). Let χ1, . . . , χr be the irreducible characters of G. Then the
following hold.

〈χs, χt〉 =

r∑
i=1

χs(gi)χt(gi)

|CG(gi)|
= δs,t

for any 1 ≤ s, t ≤ r.

Proof Apply Proposition 16.4 (2) to Corollary 17.4 (1).

Lemma 18.2. The matrix U := (ui,j)1≤i,j≤r given by

ui,j :=
χi(gj)√
|CG(gj)|

is a unitary matrix, i.e. invertible with U−1 = UT . In particular, the character table of G is invertible.

Proof By Theorem 18.1, we have

δi,j = 〈χi, χj〉 =

r∑
k=1

χi(gk)χj(gk)

|CG(gk)|
=

r∑
k=1

uk,iuk,j .

This means that the identity matrix I = (δi,j)1≤i,j≤r is given by UTU ; the claim now follows.

Theorem 18.3 (Column orthogonality). Let χ1, . . . , χr be the irreducible characters of G. Then
the following hold.

r∑
k=1

χk(gs)χk(gt) = δs,t|CG(gt)|

for any 1 ≤ s, t ≤ r.

Proof Lemma 18.2 says that UTU = I, which is equivalent to

δs,t =
r∑

k=1

uk,suk,t =
r∑

k=1

χk(gs)χk(gt)

|CG(gs)|
,

as required.

We can also refine Corollary 17.4 (3).

Proposition 18.4. For any class function ψ ∈ C(G), we have ψ =
∑r

i=1〈ψ, χi〉χi.

Proof Consider the character table matrix X := (χi(gj))1≤i,j≤r. This is the change of basis matrix
from {χi}i to {δj}j . By Lemma 18.2, the inverse of X is given by M := (mi,j)1≤i,j≤r where

mi,j := 〈δj , χi〉 =
χi(gj)

|CG(gj)|
.

Hence, M is the change of basis matrix from {δj}j to {χi}i.

Since ψ =
∑r

j=1 ψ(gj)δj , applying M yields

ψ =
r∑
i=1

 r∑
j=1

χi(gj)

|CG(gj)|
ψ(gj)

χi

which yields
∑r

i=1〈ψ, χi〉χi by Lemma 16.4 (2).

28



19 Inflation from normal subgroup

In this section, we aim to lift characters of the quotient group G/N for some non-trivial normal
subgroup N CG to characters of G. Thus giving more toolbox for us to figure out full character table.

Let us first look at it on the representation level. Since we have a canonical projection pN : G� G/N
(given by g 7→ gN), a representation (group homomorphism) ρ : G/N → GL(V ) of G/N natural
extends to a representation ρ̃ := (ρ ◦ pN ) : G → GL(V ) of G. We call ρ̃ the inflation of ρ (by N), or
the lift of ρ. Same terminology applies to characters, for χ = χρ, it is often to simply write χ̃ for χρ̃.

Lemma 19.1. For a non-trivial normal subgroup N CG and a representation ρ : G/N → GL(V ) of
G/N with associated character χ = χρ. The following hold.

(1) ρ is irreducible if and only if ρ̃ is irreducible.

(2) χ̃(g) = χ(gN). In particular, we have deg χ̃ = degχ.

(3) There is a bijection of representation (up to isomorphism):

{irred. rep’s of G/N} ↔ {irred. rep’s of G with kernel N}

given by ρ 7→ ρ̃.

Proof (1) By Theorem 17.5, it is enough to show that 〈χ̃, χ̃〉G = 1 if and only if 〈χ, χ〉G/N = 1.
Indeed,

〈χ̃, χ̃〉G =
1

|G|
∑
g∈G

χ̃(g)χ̃(g)

=
1

|G|
∑

gN∈G/N

∑
n∈N

χ̃(gn)χ̃(gn)

=
1

|G|
∑

gN∈G/N

∑
n∈N

χ(gN)χ(gN)

=
1

|G|
∑

gN∈G/N

|N |χ(gN)χ(gN)

=
1

|G/N |
∑

gN∈G/N

χ(gN)χ(gN) = 〈χ, χ〉G/N

(2) Directly computation: χ̃(g) = Tr(ρ̃g) = Tr(ρgN ) = χ(gN) for any g ∈ G.

(3) By definition, we have ρ̃(n) = ρ(1GN) for all n ∈ N , and so Ker ρ̃ ≥ N . Hence, combining with
(1), we have that ρ 7→ ρ̃ is a well-defined map on the stated sets.

Suppose that θ : G→ GL(V ) is a representation with Ker θ ≥ N . Consider the assignment ρ : G/N →
GL(V ) given by ρgN := θg. Let us check that ρ is a well-defined group homomorphism. Indeed, if
gN = g′N , then g−1g′ ∈ N , and so θg−1g′ = id by Ker θ ≥ N . Since θ itself is a gorup homomorphism,
we have

θ−1
g θg′ = θg−1θg′ = θg−1g′ = id,

which means that
ρgN = θg = θg′ = ρg′N .

It is routine to check that ρ is a group homomorphism. By direct computation, we have that χθ is
the same as the lifted character χρ̃, and so θ ∼= ρ̃ by Theorem 17.5. In particular, the construction of
ρ from θ is inverse to inflation, and vice versa.
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It turns out that there is a normal subgroup of G allows us to obtain ALL 1-dimensional (irreducible)
representations. Recall that the derived subgroup G′, or commutator subgroup, of G is the generated
by all elements of the form

[g, h] := ghg−1h−1

for g, h ∈ G. Note that this does not mean all elements of G′ are of the form [g, h], but rather the
identity element 1G or [g1, h1][g2, h2] · · · [gn, hn] for some n ≥ 1. Note also that [g, h]−1 = [h, g].

Lemma 19.2. G′ is the unique minimal normal subgroup of G whose quotient is abelian, i.e. G/N
abelian ⇔ N ≥ G′.

Proof Take any k ∈ G. Then we have

k[g, h]k−1 = k(ghg−1h−1)k−1 = (kg)hg−1(k−1k)(h−1k−1)

=
(
(kg)h(kg)−1h−1

)(
hkh−1k−1

)
= [kg, h][h, k] ∈ G′.

In particular, we have

k([g1, h1][g2, h2] · · · [gn, hn])k−1 =
(
k[g1, h1]k−1

)(
k[g2, h2]k−1

)
· · ·
(
k[gn, hn]k−1

)
∈ G′.

Hence, G′ is a normal subgroup of G.

Consider a normal subgroup N CG and g, h ∈ G. Then we have

[g, h] = ghg−1h−1 ∈ N ⇔ ghN = hgN ⇔ (gN)(hN) = (hN)(gN).

Thus, N ≥ G′ if and only if G/N is abelian.

Proposition 19.3. Let ` := |G|/|G′|. Then G has precisely ` (irreducible) representations (up to
isomorphism) of dimension 1, all of which are obtained by lifting the irreducible representations of
G/G′.

Proof By Proposition 9.6, we know there G/G′ has exactly ` irreducible representations, all of
which are of 1-dimensional. Thus, these lifts to 1-dimensional (irreducible) representations of G. By
Lemma 19.1 (3), these representations all have kernel containing G′.

Suppose that ρ : G→ C× is a 1-dimensional representation of G. Then we have

ρ([g, h]) = ρgρhρ
−1
g ρ−1

h .

But ρ is a group homomorphism and C× is abelian, and so the above formula evaluates to 1 ∈ C.
Thus, we have Ker ρ ≥ G′, and so it follows from Lemma 19.1 (3) that ρ must be a lift of some
representation of of G/G′.

Example 19.4. For all n ≥ 3, the derived subgroup of the symmetric group Sn of rank n is the
alternating group An of rank n. In particular, Sn has exactly two characters of degree 1, namely, the
trivial character and sign character.

Proof Since Sn /An ∼= C2 is abelian, we have by Lemma 19.2 An ≥ S′n. For the reverse inclusion,
recall that An can be generated by 3-cycles of Sn. Notice that

(123) = (132)(12)(132)−1(12)−1 = [(132), (12)] ∈ S′n,

and so An ≤ S′n. The final statement now follows from Proposition 19.3.
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Example 19.5 (Character table of S4). For symmetric groups, the conjugacy classes are deter-
mined by cycle-type, so for G = S4 we can take the following representatives of its conjugacy classes:

g1 = 1, g2 = (12), g3 = (123), g4 = (12)(34), g5 = (1234).

Consider the following Klein 4-group V4
∼= C2 × C2.

N = V4 = {1, (12)(34), (13)(24), (14)(23)}.

It is routine to check that N CG. Let a := (123)N and b := (12)N , then we have

G/N = 〈a, b | a3 = N = b2, abab = N〉,

i.e. G/N ∼= D6. Recall from Example 15.8 the character table of D6. Lifting this to G yields the
following character table:

Ci 1 6 8 3 6
gi 1 (12) (123) (12)(34) (1234)

χ1 = χ̃1 1 1 1 1 1
χ̃(13) 1 −1 1 1 −1

χ̃(2,1) 2 0 −1 2 0

χ x1 x2 x3 x4 x5

χ′ y1 y2 y3 y4 y5

Note that (1234) · (12)(34) = (13), and so χ̃(2,1)(1234) = χ̃(2,1)(13) = χ̃(2,1)(11) = 0.

We can then calculate the rest of table using (only!) column orthogonality. We will do this column-
by-column, so we will drop the subscripts in the following.

Col 1:

• (Col 1 vs Col 1) ⇒ x2 + y2 + 6 = 24. Since x, y must be positive integers, by slowly trying out
x = 1, 2, 3, 4 one can see that x = y = 3 is the only possible solution.

Col 2:

• (Col 1 vs Col 2) ⇒ 3x+ 3y = 0 ⇒ x = −y

• (Col 2 vs Col 2) ⇒ 2 + x2 + y2 = 4 ⇒ 2x2 = 2 ⇒ (x, y) = (1,−1) (at this stage, we can
pick whichever sign without loss of generality)

Col 3:

• (Col 2 vs Col 3) ⇒ x− y = 0 ⇒ x = y

• (Col 3 vs Col 3) ⇒ 3 + x2 + y2 = 3 ⇒ 2x2 = 0 ⇒ x = 0 = y

Col 4:

• (Col 2 vs Col 4) ⇒ x− y = 0 ⇒ x = y

• (Col 1 vs Col 4) ⇒ 6 + 3x+ 3y = 0 ⇒ 2x = −2 ⇒ x = −1 = y

Col 5:

• (Col 2 vs Col 5) ⇒ 2 + x− y = 0 ⇒ x = y − 2

• (Col 4 vs Col 5) ⇒ x+ y = 0 ⇒ 2x = 2 ⇒ (x, y) = (−1, 1)

Thus, we have
|Ci| 1 6 8 3 6
gi 1 (12) (123) (12)(34) (1234)

χ1 = χ̃1 1 1 1 1 1
χ̃(13) 1 −1 1 1 −1

χ̃(2,1) 2 0 −1 2 0

χ 3 1 0 −1 −1
χ′ 3 −1 0 −1 1
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20 Fixed points, orbits, permutation character

We answer Exercise 16.2 here.

Lemma 20.1. Let X be a G-set and πX the associated permutation character. Then 〈πX ,1G〉 is the
number of G-orbits on X. In particular, trivG is always a direct summand of CX.

Proof Consider first the case when when G acts transitively on X. Now by Lemma 14.2 and
exchange of summation we have

〈πX ,1〉 =
1

|G|
∑
g

π(g) =
1

|G|
∑
g

#Xg =
1

|G|
∑
g

#{x ∈ X | gx = x}

=
1

|G|
#{(g, x) ∈ G×X | gx = x}

=
1

|G|
∑
x∈X
|StabG(x)|

By the orbit-stabiliser theorem we have

〈πX ,1〉 =
1

|G|
∑
x∈X

|G|
|X|

=
1

|G|
· |X| · |G|

|X|
= 1.

This proves the claim when G acts transitively. In general, partitioning X into orbits X1 t · · · tXm

yields CX = CX1 ⊕ · · · ⊕ CXm (details are left as Homework 2), and so the claim follows.

The final statement is immediate from Corollary 17.4 (3), which says that CX ∼= triv⊕〈πX ,1〉⊕U for
some CG-module U .

Example 20.2. The symmetric group Sn acts on n letters [n] := {1, 2, . . . , n} transitively. Hence,
we have 〈π[n],1〉 = 1. In particular, π[n] − 1 is character of some CSn-module.

In the case when n = 3, recall we have the following characters:

|Ci| 1 3 2
gi 1 (12) (123)

π[3] 3 1 0

π[3] − 1 2 0 −1

One can remember from Example 15.8 that this is the character associated to the 2-dimensional irre-
ducible representation of S3

∼= D6.

For two G-sets X,Y , we can form a product X × Y that is naturally a G-set with diagonal G-action:

g(x, y) := (gx, gy)

for all g ∈ G, x ∈ X, y ∈ Y .

Proposition 20.3. Suppose that X,Y are G-sets. Then 〈πX , πY 〉 is the number of G-orbits on the
product G-set X × Y .

Proof For any g ∈ G, we have

(X × Y )g = {(x, y) ∈ X × Y | g(x, y) = (x, y)} = Xg × Y g.
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Thus, by Lemma 14.2 and Lemma 20.1, we have

〈πX , πY 〉 =
1

|G|
∑
g

πX(g)πY (g)

=
1

|G|
∑
g

#Xg ·#Y g

=
1

|G|
∑
g

#(X × Y )g

= 〈πX×Y ,1G〉
= #(G-orbits of X × Y ),

as required.

Definition 20.4. A G-action on a G-set X is called 2-transitive if the number of orbits of the diagonal
G-action on X × X is precisely 2. Equivalently, ∀x 6= y and ∀x′ 6= y′ with x, y, x′, y′ ∈ X, ∃g ∈ G
such that gx = x′, gy = y′.

Note that 2-transitive implies transitive G-action on X.

Example 20.5. Sn acts 2-transitively on [n] for any n ≥ 3. However, when n = 3, the alternating
group A3 = {1, a := (123), b := (132)} acts transitively on [3] but not 2-transitively. Indeed, we have

a(1, 3) = (2, 1) and b(1, 3) = (3, 2),

which means that (1, 2) is not in the A3-orbit of (1, 3).

Corollary 20.6. If G-action on X is 2-transitive, then the character πX − 1G is irreducible.

Proof We have

〈πX − 1G, πX − 1G〉 = 〈πX , πX〉 − 〈πX ,1G〉 − 〈1G, πX〉+ 〈1G,1G〉
= 〈πX , πX〉 − 2〈πX ,1G〉+ 1

Thus, πX − 1G is irreducible if and only if the last line evaluates to 1.

By Lemma 20.3, G-action on X is 2-transitive if and only if 〈πX , πX〉 = 2. Since 2-transitive im-
plies transitive, we also have 〈πX ,1G〉 = 1 by Lemma 20.1. Substituting these values to the above
calculation yields the 〈πX − 1, πX − 1〉 = 1 as required.

Example 20.7. For any n ≥ 3, π[n] − 1 is an irreducible character of Sn.

21 Restriction and restricted character

Note that the ground field K can be anything in the definition below, but we will take K = C whenever
we talk about characters.

Definition 21.1. Suppose that we have a subgroup H ≤ G and G-representation ρ : G → GL(V )
(equivalently, KG-module V ). Then the restriction ResGH(ρ) (or ρ ↓GH) of ρ, is the H-representation

given by the composition H ↪→ G
ρ−→ GL(V ).

Equivalently, the restriction of V is the KH-module ResGH(V ) (or V ↓GH) given by same K-vector space
V where we only remember the action of the elements in H.

We may omit the superscript G and subscript H if context is clear.
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Lemma 21.2. For any CG-module V and subgroup H ≤ G, we have restricted character χV ↓H :=
χResGH(V ) given by χV ↓H (h) := χV (h) for all h ∈ H.

Proof Clear from definition of ResGH(V ).

We can also define restricted class function ψ ↓H∈ C(H) for any class function ψ ∈ C(G) given by

ψ ↓H (h) = ψ(h) ∀h ∈ H.

By the above lemma and the fact that irreducible characters form a basis of the space of class function,
we have

ψ =
∑
i

aiχi ⇒ ψ ↓H=
∑
i

ai (χi ↓H).

In general, restriction does not preserve simplicity (irreducibility). In the case, when K = C, we know
that Res(V ) is a direct sum of simple CH-modules. So one natural question is whether all simple
CH-module can appear as a direct summand of restriction.

Lemma 21.3. For all irreducible character ψ of H, there exists an irreducible character χ of G such
that 〈ResGH χ, ψ〉H 6= 0. In other words, for the corresponding simple CH-module U = Uψ and simple
CG-module V = Vχ we have Res(V ) ∼= U ⊕ U ′ as CH-modules.

Proof Recall from Proposition 10.3 that every irreducible representation is a direct summand (up
to isomorphism) of the regular representation. Hence, we have

〈πreg ↓H , ψ〉H =

r∑
i=1

〈(diχi) ↓H , ψ〉H =

r∑
i=1

di〈χi ↓H , ψ〉H ,

where πreg is the character corresponding to the regular representation. Note that, in the last equality,
we used the fact that (χ + χ′) ↓H= χ ↓H +χ′ ↓H , or equivalently, Res(V ⊕ V ′) ∼= Res(V ) ⊕ Res(V ′);
both of them are straightforward from the definition (albeit possibly not immediate at first glance).

Now note that the regular representation itself is a permutation representation CX associated to the
G-set X = G. Hence, it follows from the formula for permutation character (Lemma 14.2) that

πreg(g) =

{
|G|, if g = 1;

0, if g 6= 1.

Thus, we have

〈πreg ↓H , ψ〉H =
1

|H|
∑
h∈H

πreg(h)ψ(h) =
1

|H|
πreg(1)ψ(1) =

|G|
|H|

ψ(1) 6= 0

as required.

22 Clifford theory

Restriction to normal subgroups are often of particular interest; the theory around it (including the
positive characteristic case) is called Clifford theory.

Lemma 22.1. Consider a normal subgroup H C G and an element g ∈ G. For a KH-module U ,
denote by

gU := {gu | u ∈ U}
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the set of symbols ug for u ∈ U . Then gU is a CH-module with action

h(gu) := g(g−1hgu)

and dimK
gU = dimK U .

In words, gU is the space U with H-action twisted by conjugation-by-g.

Proof Straightforward check for well-definedness of H-action (i.e. (h′h)(gu) = h′(h(gu)) for all
h, h′ ∈ H). For the dimension, just note that u 7→ gu is a linear map that is bijective.

Proposition 22.2. Suppose that HCG, V is a simple KG-module, and U is a simple direct summand
of the CH-module ResGH(V ). The the following hold.

(1) There is some set T ⊂ G such that ResGH(V ) ∼=
⊕

g∈T
gU as KH-module and each gU is simple.

(2) g1U ∼= g2U as KG-module implies that gg1U ∼= gg2U as KG-module for all g ∈ G.

Proof (1) By construction the space
∑

g∈G
gU ⊂ V is a G-invariant, and so simplicity of V implies

that V =
∑

g∈G
gU as CG-module, which in turn means that ResGH(V ) =

∑
g∈G

gU .

Let W be a simple submodule of gU . Then g−1
W is a simple submodule of g

−1
(gU) = U . Simplicity

of U then implies that g−1
W is either 0 or U , and so W = 0 or gU .

For each pair g, g′ ∈ G, irreducibility of gU and g′U as CH-module implies that either they are
isomorphic or gU ∩ g′U = 0. So we can take one gU for each isomorphism class to get the desired
decomposition V ∼=

⊕
g∈T

gU .

(2) Exercise.

Theorem 22.3 (Clifford’s theorem). Suppose H C G is a normal subgroup and χ = χV is an
irreducible character for some simple CG-module V . If U is a simple direct summand of the CH-
module ResGH(V ), then there is some integer e such that

ResGH(V ) ∼= (U ⊕ t1U ⊕ · · · tkU)⊕e

as CH-modules.

Proof By Proposition 22.2, we already have ResGH(V ) being isomorphic to a direct sum of gU for
some set g. It remains to show that the multiplicity [ResGH(V ) : gU ] is constant.

Denote by ψW the H-character corresponding to CH-module W . Note that ψgW (h) = ψW (g−1hg).
In particular, we get that

ψRes(V )(h) = χV (h) = χV (g−1hg) = ψgRes(V )(h)

as χV is constant over any G-conjugacy classes.

By Corollary 17.4 (3), we then have

[ResGH(V ) : gU ] = 〈χV ↓H , ψgU 〉H = 〈ψRes(V ), ψgU 〉H = 〈ψgRes(V ), ψgU 〉H

=
1

|H|
∑
h∈H

χV (g−1hg)ψU (g−1hg)

=
1

|H|
∑

k(:=g−1hg)∈H

χV (k)ψU (k)

= 〈χV ↓H , ψU 〉H = [ResGH(V ) : U ],

as required.
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Remark 22.4. Clifford theory (Proposition 22.2 and Theorem 22.3) holds in arbitrary characteristic.
But it is easier (only slightly, though) to explain the proof with character theory. By Proposition
22.2 (2), the elements g with gU isomorphic to U form a group (called the inertia group of U). The
elements ti’s in Theorem 22.3 can be taken from the (right) coset representatives of this inertia group.

One can use Clifford theory to reveal a lot of information on the character table, especially in the case
when |G/N | = 2; see Liebeck’s book Chapter 20.

23 Induced module

Throughout this section, we relax our assumption on the ground field K to be any arbitrary field.

Definition 23.1. Suppose that A is a K-algebra (=ring structure on a vector space, e.g. A = KG
the group algebra). Let M be a right A-module, and N be a left A-module. Then the tensor product
M ⊗A N of M and N over A is the quotient K-vector space M ⊗K N/R, where

R = {ma⊗ n−m⊗ an | m ∈M,a ∈ A,n ∈ N}.

Remark 23.2. Note that any A-module is automatically a K-vector space (since K ↪→ Z(A)). Also be
very careful that the K-vector space M ⊗A N is generally not an A-module has neither left nor right
A-module structure (without additional assumptions)!

Definition 23.3. Let A,B be K-algebras. An K-vector space M is an A-B-bimodule if it is a
left A-module and right B-module with commuting A- and B-action, i.e. r(ms) = (rm)s for all
r ∈ R,m ∈M, s ∈ S. In other words, it is a left module over A×Bop (equivalently, right module over
B ×Aop).

Lemma 23.4. Consider rings A,B,C. Let M be an A-B-bimodule, N be an B-C-bimodule, and L
be an A-C-bimodule.

(1) M ⊗B N is a A-C-bimodule given by a · (m⊗ n) := (am)⊗ n and (m⊗ n) · c := m⊗ (nc).

(2) HomA(L,M) is a C-B-bimodule given by (c · f)(l) := (f(lc)) and (f · b)(l) := f(l)b.

Proof Exercise.

The above lemma tells us that tensor and Hom can be used to ‘transfer’ modules (in fact, even homo-
morphisms) over different rings. Another consequence of Lemma 23.4 is that, if R is a commutative
ring, then R-modules are the same as R-R-bimodules, and so M ⊗R N are automatically R-modules
for R-modules M and N . More generally, a left (resp. right) modules over a K-algebra A is automat-
ically an A-K-bimodules (resp. K-A-bimodules). Thus the tensor product M ⊗A N is automatically
a K-vector space.

Example 23.5. A⊗AM ∼= M as left A-module for all left A-module M .

Recall the ‘useful isomorphism’ in Lemma 12.5 (adjoint property); it has the following enhanced
version.

Lemma 23.6. Suppose A,B are K-algebras, X is an A-B-bimodule. Then for any B-module M and
A-module N , there is a K-vector space isomorphism HomA(X ⊗B M,N) ∼= HomB(M,HomA(X,N)).

Proof Verbatim to the proof of Lemma 12.5.

Definition 23.7. Suppose H ≤ G. For a KH-module U , its induction to G, denoted by IndGH(U) or
U ↑GH , is the KG-module given by KG⊗KH U . For the representation ρ corresponding to U , we write
IndGH(ρ) or ρ ↑GH for the induced representation corresponding to IndGH(U).
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Remark 23.8. KG ⊗KH − is functorial (i.e. it can be applied to homomorphisms in a way that
preserves axioms regarding compositions). Restriction can be made functorial by noticing that

ResGH(V ) = HomKG(KGKGKH , V )

where KG in the domain here is regarded as a KG-KH-bimodule.

Let us describe G-action in a slightly more explicit way. We need the following terminology for simpler
exposition.

Definition 23.9. A left transversal of H in G is a complete list 1 = t1, t2, . . . , tk of H-cosets repre-

sentatives, i.e. G =
k⊔
i=1

tiH.

Lemma 23.10. Consider a left transversal 1 = t1, . . . , tk of H ≤ G.

(1) The right KH-module KG is free of rank k, namely,

(KG)KH =
k⊕
i=1

Kti ⊗K KH∼=(KH)⊕n.

(2) Let U be a KH-module. If U has a K-basis B, then IndGH(U) has a K-basis {ti ⊗ b | b ∈ B, 1 ≤
i ≤ k}, i.e.

IndGH(U)
K-v.sp.∼=

k⊕
i=1

Kti ⊗K U.

In particular, we have dimK IndGH(U) = |G/H|dimK(U).

Proof (1) Since every g ∈ G can be written as g = tih for some unique i and some h ∈ H, we have
a K-vector space isomorphism

Kti ⊗KH ∼= K(tiH) given by ti ⊗ h 7→ tih for all h ∈ H.

Since tihh
′ ∈ tiH for all h, h′ ∈ H, each K(tiH) is isomorphic to KH as a right H-module.

(2) Now we have K-vector space isomorphisms:

IndGH(U) = KG⊗KH U ∼= (

k⊕
i=1

Kti ⊗K KH)⊗KH U ∼=
k⊕
i=1

Kti ⊗K (KH ⊗KH U) ∼=
k⊕
i=1

Kti ⊗ U,

where the final isomorphism follows from Example 23.5. The claim follows from the right-hand side
formulation.

We can now describe G-action on IndGH(U) more explicitly as follows. Take a left transversal 1G =
t1, . . . , tk. Then by Lemma 23.10 (2) it is enough to describe G-action on ti⊗u ∈ Kti⊗U ⊂ IndGH(U).
For g ∈ G, we have gtiH = tjH for some j, i.e.

gti = tjh for some t ∈ H.

This yields, for any u ∈ U , the following g-action on ti ⊗ u ∈ IndGH(U):

g(ti ⊗ u) = (gti)⊗ u = tjh⊗ u = tj ⊗ hu = tj ⊗ (t−1
j gti)u. (23.1)

Exercise 23.11. Check that (23.1) really defines a linear G-action on IndGH(U), i.e. (g′g)(ti ⊗ u) =
g′(g(ti ⊗ u)) for all ti, u.
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Example 23.12. Suppose H ≤ G is a subgroup. Consider the K-vector space MH := K(G/H) whose
basis is given by the set of left G-cosets G/H. Then MH is a KG-module. It follows from Lemma
23.10 (1) that MH

∼= IndGH(trivH).

Lemma 23.13. Suppose we have subgroups L ≤ H ≤ G. Then IndGH IndHL (U) = IndGL (U) for all
U ∈ KLmod.

Proof This follows from the fact that M ⊗A (N ⊗B L) ∼= (M ⊗A N) ⊗B L as bimodules (check
yourself). Namely, KG⊗KH (KH ⊗KL U) ∼= (KG⊗KH KH)⊗KL U = KG⊗KL U .

Exercise 23.14. Let H ≤ G, V a KG-module and W a KH-module. Show that

(1) IndGH(W ∗) ∼= (IndGH(W ))∗.

(2) V ⊗K IndGH(W ) ∼= IndGH(ResGH(V )⊗K W ).

24 Induced class function and character

As before, we fix a subgroup H ≤ G.

Definition 24.1. For a class function ψ ∈ C(H), defined the induced class function IndGH ψ = ψ ↑G
by

IndGH ψ(g) =
1

|H|
∑
x∈G

x−1gx∈H

ψ(x−1gx).

This is a class function of G by construction.

We can reformulate the definition in terms of left transversal only, instead of having to compute over
all x ∈ G.

Lemma 24.2. Let t1, . . . , tk be a left transversal of H in G, then we have

ψ ↑G (g) =
∑

ti s.t. t−1
i gti∈H

ψ(t−1
i gti).

Proof Every x ∈ G can be written as tih for some h ∈ H and some unique (by Lagrange’s theorem)
i. Hence, we have

x−1gx = (tih)−1g(tih) = h−1(t−1
i gti)h.

If t−1
i gti ∈ H, then the right-hand term in the formula above is in the same H-conjugacy class. Since

ψ is a class function, we have ψ(x−1gx) = ψ(t−1
i gti). Thus, we have

IndGH ψ(g) =
1

|H|
∑
x∈G

x−1gx∈H

ψ(x−1gx)

=
1

|H|
∑
h∈H

∑
ti:t
−1
i gti∈H

ψ(h−1t−1
i gtih)

=
|H|
|H|

∑
ti:t
−1
i gti∈H

ψ(t−1
i gti)

as required.

Lemma 24.3. Suppose that W is a CH-module for a subgroup H ≤ G. Let t1, . . . , tk be a left
transversal of H in G. Then the induced character χW ↑G is the character of the induced module
IndGHW .
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Proof Suppose that W has a basis {wi}1≤i≤n. Then by Lemma 23.10 (2), IndW = IndGHW has
basis {ta ⊗ wi | 1 ≤ a ≤ k, 1 ≤ i ≤ n}.

Fix some g ∈ G. By definition of character, we have

χIndW (g) = Tr(Ind(ρ)g) =
∑
a,i

ca,i

where ca,i is the coefficient of ta⊗wi in the vector g(ta⊗wi) expressed in terms of the basis {tb⊗wj}b,j .
By from (23.1), we have

g(ta ⊗ wi) = tb ⊗ (t−1
b gta)wi,

which means that ca,i 6= 0 implies that b = a. Hence, we only care about the case when t−1
a gta ∈ H,

which means the induced character boils down to

χIndW (g) =
∑

a s.t. t−1
a gta∈H

χW (t−1
a gta).

The right-hand side is precisely the formula of induced character by Lemma 24.2.

The above reduces computation to coset representatives, but we often only compute character eval-
uated at conjugacy class representatives, so it would be nice to have a formula that involves only
conjugacy class representatives. Note that a conjugacy class in G may split to several conjugacy
classes in H, and so we should expect χW ↑G evaluated at gi can be expressed in terms of χW (hj)’s
where hj are H-conjugacy classes representatives that are conjugate to gi in H.

Proposition 24.4. Let H ≤ G be a subgroup and χ := χW be the character for some CH-module
W . Suppose that h1, . . . , hm are H-conjugacy classes representatives such that hi are G-conjugate to
g ∈ G for all 1 ≤ i ≤ m. Then

χW ↑G (g) = |CG(g)|
m∑
i=1

χ(hi)

|CH(hi)|
.

Proof Let C1, . . . , Cm be the H-conjugacy classes containing h1, . . . , hm respectively. Then we have
{xgx | x ∈ G} ∩H = C1 t · · · t Cm.

Let us write g′ ∼G g if g′ = xgx−1 for some x ∈ G. Starting with Lemma 24.3, we have

χ ↑G (g) =
1

|H|
∑
x∈G

χ̂(xgx−1) =
|CG(g)|
|H|

∑
g′∼Gg

χ̂(g′) =
|CG(g)|
|H|

m∑
i=1

∑
h∼Hhi

χ(h)

=
|CG(g)|
|H|

m∑
i=1

|Ci|χ(hi) = |CG(g)|
m∑
i=1

χ(hi)

|CH(hi)|
,

where the last equality follows from orbit-stabiliser theorem that |H|/|Ci| = |CH(hi)|.

Example 24.5 (Character table of D2n for n odd). When n is odd, there are (n+3)/2 conjugacy
classes of D2n given by

{1}, {ar, a−r}, {asb | 0 ≤ s ≤ n− 1}
with 1 ≤ r ≤ (n−1)/2. Their sizes are 1, 2, n respectively. We take transversal 1, a, a2, . . . , a(n−1)/2, b.

The derived subgroup is generated by rotations H = 〈a〉CG and has quotient C2 = 〈βH〉. Hence, there
are two 1-dimensional representation giving by lifting the two 1-dimensional irreducible representations
of C2, where βH acts by ±1. Hence, we get

|CG(gi)| 2n n 2
gi 1 ar b

χ1 1 1 1
χ2 1 1 −1
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On the other hand, we can also consider induction from H. Recall that, as H ∼= Cn, the irreducible
H-representations are 1-dimensional and given by ψs : a 7→ ξr for 1 ≤ s ≤ n, where ξ := exp(2πi/n).
Since |G|/|H| = 2, we have ψr ↑G (1) = 2 × 1 = 2. Let us apply Proposition 24.4 to get the
remaining values of the induced characters ψs ↑G. For ar, it is G-conjugate to (the H-conjugacy class
representatives) ar and a−r. Hence, we have

ψs ↑G (ar) = |CG(ar)|
( ψs(a

r)

|CH(ar)|
+

ψs(a
−r)

|CH(a−r)|

)
= n(

ξsr

n
+
ξ−sr

n
) = ξsr + ξ−sr.

On the other hand, b is G-conjugate to none of the ar’s, and so ψs ↑G (b) = 0. Thus, we have

|CG(gi)| 2n n 2
gi 1 ar b

ψs ↑G 2 ξsr + ξ−sr 0

We check that

〈ψs ↑G, ψs ↑G〉 =
4

2n
+

(n−1)/2∑
r=1

(ξsr + ξ−sr)2

n
+

0

2

=
4

2n
+

n− 1

2
· 2

n
+

1

n

(n−1)/2∑
r=1

ξ2sr + ξ−2sr


=

2

n
+ 1− 1

n
− 1

n
= 1,

and so ψs ↑G is irreducible as G-character. Thus, the full character table of D2n is

|CG(gi)| 2n n 2
gi 1 ar b

χ1 1 1 1

χ2 1 1 −1

ψs ↑G 2 ξsr + ξ−sr 0

with 1 ≤ r, s ≤ (n− 1)/2

25 Induction-Restriction interaction

Lemma 25.1. There are KH-module isomorphisms KHKG⊗KG V ∼= ResGH(V ) ∼= HomKG(KG,V ).

Proof Exercise.

The coinduction of a KH-module U is CoindGH(U) := HomKH(KHKGKG, U).

Proposition 25.2. There is a KG-module isomorphism CoindGH(U) ∼= IndGH(U).

Proof Consider the map α : KG⊗KH U → HomKH(KG,U) given by

g ⊗ u 7→

(
x 7→

{
(xg)u if xg ∈ H
0 otherwise.

)

Extend this linearly to a K-linear map and check that this is a KG-module homomorphism. (Exercise!)
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On the other hand, we have β : HomKH(KG,U)→ KG⊗KH U given by

f 7→
k∑
i=1

ti ⊗ f(t−1
i ),

which can be easily checked to be KG-module homomorphism. (Exercise!)

Finally, by direct computation, we have αβ = id = βα.

Corollary 25.3 (Eckmann-Shapiro lemma for Hom-spaces). There are K-vector space isomor-
phisms:

(1) (Frobenius reciprocity) HomKG(IndGH U, V ) ∼= HomKH(U,ResGH V ).

(2) HomKH(ResGH V,U) ∼= HomKG(V, IndGH U).

Proof Consequence of tensor-Hom adjunction Lemma 23.6.

Remark 25.4. Both of these isomorphisms are (bi-)natural. In particular, this means that IndGH and
ResGH are biadjoint functors.

For time constraint, we omit the proof of the following theorem.

Theorem 25.5 (Mackey decomposition theorem). For H,L ≤ G. Let U ∈ KLmod. Then there is
the following KH-module isomorphism

U ↑GL↓GH∼=
⊕

t∈H\G/L

(tU) ↓LH∩tL↑
H
H∩tL,

where H\G/L denotes the set of double cosets {HgL | g ∈ G}, and tL := {t`t−1 | ` ∈ L} and
tU ∈ KtLmod is given by x · u := txt−1u for all x ∈ L and u ∈ U .

Exercise 25.6. Suppose N CG is a normal subgroup of G and W ∈ KN mod. Show that

ResGN IndGN W
∼=

⊕
x∈G/N

xW.

26 Permutation representations as induced representations

Recall that the stabiliser StabG(x) of x ∈ Ω is the subgroup {g ∈ G | gx = x}; for simplicity, we
denote by Hx := StabG(x) whenever context is clear.

Lemma 26.1. If G acts transitively on Ω and x ∈ Ω, then the map

Ω→ G/Hx, gx 7→ gHx,

is a bijection on G-sets that commutes with G-action, i.e. Ω ∼= G/Hx are isomorphic as G-set. In
particular, we have

(1) KΩ ∼= K(G/Hx) ∼= IndGHx(trivHx) as KG-modules.

(2) Any permutation module is a direct sum of induced modules.

Proof Since gx = hx ⇔ x = g−1hx ⇔ g−1h ∈ Hx ⇔ gHx = hHx, the map is well-defined and
injective. Surjective follows from orbit-stabiliser theorem and transitivity |G/Hx| = |Gx| = |Ω|.

Finally, commutation with G-action follows from the assumption that Ω as g(hx) = (gh)x for all x ∈ Ω
and all g, h ∈ G.
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(1) The first isomorphism follows immediately from the first part, namely, by linearly extending the
bijection between Ω and G/Hx (see Homework2 Ex1).

The second isomorphism is Example 23.12. For the detailed explanation: note that by Lemma 23.10
we have IndGHx(trivHx) is a |G/Hx| = |Ω|-dimensional K-vector space with basis given by {ti ⊗ u}i
where (ti)i is a transversal of Hx ≤ G and u is any spanning vector of the 1-dimensional trivHx .

By (23.1), if gti ∈ tjH, then we have g(ti⊗u) = tj ⊗u. This is equivalent to saying that the G-action
on the induced modules coincides with the permutation action on cosets, which is what is claimed.

(2) For arbitrary G-set Ω, we can decompose it into G-orbits Ω = Ω1 t · · · t Ωm. Then each Ωi is a
G-set for which G acts transitively, and the claim follows from (1).

Exercise 26.2. Consider an integer n ≥ 1 and an integer r ≤ n/2. Let Ωr be the set of r-
subsets (=subsets of size r) of {1, 2, . . . , n}. Find (and prove) a subgroup H ≤ Sn such that KΩr

∼=
IndSn

H trivH .
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27 Partition, Young diagram, tableaux

Definition 27.1. For a positive integer n ≥ 1, a composition µ of n is a sequence (µi)i≥1 of non-
negative integers such that

∑
i≥1 µi = n; we use the shorthand µ � n to say that µ is a composition of

n. A partition λ of n is a composition with

λ1 ≥ λ2 ≥ λ3 ≥ · · · .

The shorthand to say that λ is a partition of n is written as λ ` n. It makes sense to cut off the
trailing zeros when specifying a composition or partition.

We call each µi a component or a part of µ; likewise for partitions. An r-part partition λ is one with
one with exactly r non-zero parts, i.e. λr 6= 0 and λ>r = 0.

If we forget to write down the number of non-zero parts for a partition, then we assume r is such a
number.

The importance of partition in the representation of symmetric groups are rooted in the following
simple observation.

Lemma 27.2. There is a one-to-one correspondence between the set of partitions of n and the conju-
gacy classes of Sn.

Proof A conjugacy class of Sn is uniquely determined by the cycle-type of the elements it contains.
We can represent the cycle-type in a well-defined way by writing down the length of each cycle in a
decreasing sequence. Such a sequence necessarily sums to n and so is a partition of n. Conversely, a
partition of n determines a cycle-type as its components gives the length of each cycle.

In particular, we know that the irreducible KSn-modules (when K has good characteristics) are
parameterised by partitions of n. These are called the Specht modules. Note that the modular
representation version of Specht modules are not irreducible.

Definition 27.3. The Young diagram of a partition λ ` n is a array of boxes (also called nodes)
where the i-th row has λi boxes, and the rows are left-justified.

We use the English convention dealing with Young diagram and any tableaux combinatorics. There
are also the French convention where rows are arranged in reversed order and the Russian convention
where the diagram is the 135-degree counter-clockwise rotation of the English convention.

Example 27.4. Usually, if there are k (consecutive) repeated entries of i r, then we write ik instead of
writing it k-times. For example, λ = (3, 2, 2, 1, 1, 1) ` 10 is written as (3, 22, 13). The Young diagram
of such λ is

We coordinate the boxes in a Young diagram so that the box at (i, j) means it is placed at the i-th
row at the j-th column (just like in matrix notation). In this way, the Young diagram of λ can be
regarded as the set [λ] := {(i, j) | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}.

To construct an Sn-representation out of a partition λ, the natural way is to fill in [n] to the Young
diagram of λ.
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Definition 27.5. A Young tableau of shape λ ` n, or a λ-tableau for short, is a repeat-free filling of
the boxes of the Young diagram of λ by elements of [n], i.e. a bijective map t : [λ] → [n]. We write
ti,j := t(i, j) ∈ [n] the value placed in (i, j)-node.

Note that the plural form of tableau is tableaux.

Example 27.6. For λ = (3, 22, 13), we have a λ-tableau t given by

8 2 10
1 4
9 3
6
5
7

This represents the map t that maps (1, 1) to 8, (1, 2) to 2, (1, 3) to 10, (2, 1) to 1, etc. It is also
customary to just draw a tableau without the grid lines of the underlying Young diagram.

For any given partition λ ` n, Sn acts the set of λ-tableaux by applying the permutation on each
entry of the nodes. However, this action is no different from the regular representation of Sn itself.
We need some modification.

Example 27.7. For λ = (3, 22, 13) and σ = (156)(2397)(48)(10), we have

σ ·

8 2 10
1 4
9 3
6
5
7

=

4 3 10
5 8
7 9
1
6
2

Before we go on to explain the needed modification, let us introduce the following terminology.

Definition 27.8. A λ-tableau is standard if the entries increase along each row and down each column,
i.e. ti,j < ti,j′ for all j < j′ and ti,j < ti′,j for all i < i′.

Example 27.9. There is only one standard λ-tableau for λ = (n) or λ = (1n). For example, when
n = 4, we have

1 2 3 4 and

1
2
3
4

.

Clearly, Sn does not act on the set of standard λ-tableaux. But to spoil slightly, the Specht module
Sλ associated to λ, which makes up the full list of irreducible KSn-modules for good characteristic
K, have a basis indexed by standard λ-tableaux. The first main aim of this introduction to symmetric
group representation is to explain the construction of Sλ in the classical way (through tableaux
combinatorics).

28 Young subgroup, tabloids, permutation modules

The modify Sn-action on tableaux, we can consider equivalence classes of tableaux.

Definition 28.1. Two λ-tableaux t, t′ are said to be row equivalent if ti,− := {ti,j | j = 1, . . . , λi}
and t′i,− coincides for all i ≥ 1. This is an equivalence relation on the set of λ-tableaux, and the
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resulting equivalence class is called a λ-tabloid. Denote by {t} the λ-tabloid induced by (containing)
the λ-tableau t.

Example 28.2. λ-tabloids are conventionally drawn by removing the vertical gird lines in the tableaux
diagram. For example,

t = 2 6 4 3
5 1

 {t} =
2 6 4 3

5 1

Definition 28.3. Let λ = (λ1, . . . , λk) ` n and t be a λ-tableau. The row stabliser Rt of t is the
stabliser subgroup associated to Sn-action on {t}, i.e.

Rt := {σ ∈ Sn | σ{t} = {t}} = S(t1,−)×S(t2,−)× · · · ×S(tk,−),

where S(X) ∼= S|X| is the group of symmetries of X.

Dually, we can consider column stabliser Ct of t; equivalently, Ct = Rt′ where t′ is the tranpose of t,
i.e. reflecting the diagram t along (north-west,south-east) diagonal.

Example 28.4. In Example 28.2, we have Rt = S({2, 3, 4, 6}) × S({1, 5}) and Ct = S({2, 5}) ×
S({1, 6})×S({4})×S({3}).

Definition 28.5. The (standard) Young subgroup Sλ ≤ Sn associated to a partition λ = (λ1, . . . , λk) `
n is the row stabiliser of the standard λ-tableau with first row 1, 2, . . . , λ1, second row λ1 + 1, · · · , λ2,
etc.

Remark 28.6. The correspondence between conjugacy classes and partitions implies that every Rt is
conjugate to a Young subgroup associated to the shape of t.

We should check that taking σ{t} = {σt} is a well-defined Sn-action, i.e. independent on the choice
of t.

Lemma 28.7. For a λ-tableau t and σ ∈ Sn, we have Rσt = σRtσ
−1; and likewise, Cσt = σCtσ

−1.
In particular, the set Ωλ of λ-tabloids is a G-set for G = Sn.

Proof For a subset Ω ⊂ [n], we have S(σΩ) = σS(Ω)σ−1. Hence, we get that

Rσt =

k∏
i=1

S(σti,−) =

k∏
i=1

σS(ti,−)σ−1 = σ
( k∏
i=1

S(ti,−)
)
σ−1 = σRtσ

−1.

Consequently, as {t} = {t′} implies that t′ = ρt for some ρ ∈ Rt, we have

σt′ = (σρσ−1︸ ︷︷ ︸
∈Rσt

)(σt),

and so σ{t′} = {σt′} = {σt} = σ{t}, i.e. Sn acts on Ωλ.

Definition 28.8. Fix any field K (or even K = Z). The (Young) permutation module associated to
λ ` n is the Sn-module given by Mλ := KΩλ.

Note that in a similar way we can define permutation module associated to compositions, too.

Example 28.9. (1) For λ = (n), we have Mλ = K{1 2 · · · n}, and so Mλ corresponds to the
trivial representation.

(2) For λ = (1n), we have Mλ ∼= KSn the regular representation of Sn.

(3) For λ = (n − k, k) with 0 < k < bn/2c, the set Ωλ is in bijection the set of k-subsets (meaning
subsets of size k) of [n] (given by taking only the second row in each tabloid). In the case when
k = 1, Mλ is just the natural permutation module K[n] corresponding the usual Sn-action on
[n].
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Lemma 28.10. Mλ is generated by any single λ-tabloid (i.e. Mλ = KSn ·{t} for any t), and
dimKM

λ = n!
λ1!···λk! .

Proof The first part follows from the fact that Sn acts transitively on the set of λ-tableaux – hence,
on λ-tabloids, too. For the dimension, which is equal to the size of Ωλ, we have

#Ωλ =
#Sn ·t

#Rt
=

n!

λ1! · · ·λr!
,

as required.

Exercise 28.11. Show that Mλ ∼= IndSn
Sλ

(triv) as KSn-module.

29 Specht module

Recall that any permutation representation always contains the trivial representation as a subrep-
resentation. Hence, Mλ is far from being irreducible. Nevertheless, one can still find one simple
KSn-module inside Mλ. We will not give the full detail explanation, but only explain the construc-
tion.

Definition 29.1. Suppose that t is a λ-tableau. Define the signed column sum associated to t as

κt :=
∑
σ∈Ct

sgn(σ)σ ∈ KSn .

Then we have a linear combination of λ-tabloids

et := κt{t} =
∑
σ∈Ct

sgn(σ){σt} ∈Mλ,

called the polytabloid associated with t. The Specht module associated to λ is the subspace of Mλ

given by
Sλ := K-span{et | t a λ-tableau}.

Remark 29.2. et does depend on the choice of t.

Lemma 29.3. We have κσt = σκtσ
−1 and eσt = σet. In particular, Sλ is a KSn-module generated

by any single polytabloid.

Proof The claim on κt is similar to Lemma 28.7 and we leave the reader to check it. For the
polytabloid case, it then follows from the claim on κt that

eσt = κσt{σt} = (σκtσ
−1)(σ{t}) = σκtt = σet,

as claimed.

Example 29.4. (1) For λ = (n), we have Mλ is 1-dimensional and Sλ is a non-zero submodule,
and so Sλ = Mλ ∼= triv.

(2) For λ = (1n), take t the unique standard λ-tableau (filled with i in the i-th row for all 1 ≤ i ≤ n).
Then κt =

∑
σ∈Sn sgn(σ)σ, and so Sλ ∼= Kκt ⊂ CSn

∼= Mλ. This Specht module is precisely
the sign representation of Sn as we have seen in Homework 1. Alternatively, one can directly
calculate

σet = eσe =
∑
τ∈Sn

sgn(σ−1τ)τ{t} = sgn(σ−1)
∑
τ∈Sn

(sgn τ)τ{t} = (sgnσ)et.

46



(3) For λ = (n− 1, 1), a λ-tableau (and λ-tabloid) can be identified with the entry in its second row:

t = a · · · c
b

=: b.

Then, we have et = eb = b− a. Since b− a = (b− 1)− (a− 1), we have a basis of S(n−1,1) given
by

{b− 1 | 2 ≤ b ≤ n},

and thus dimK S
(n−1,1) = n − 1. In fact, it is easy to check that S(n−1,1) is the subspace of

M (n−1,1) consisting of elements v =
∑n

b=1 αbb (where αb ∈ K) such that α1 +α2 + · · ·+αn = 0.
When K = C, we can see that S(n−1,1) matches with the degree n − 1 irreducible character of
Sn given by π[n] − 1 (Example 20.2).

It turns out that one can “isolate” (detecting non-vanishing homomorphism) Sλ from Mµ using only
combinatorics. This is encoded by a certain partial order on the set of partitions of n.

Definition 29.5. For λ, µ ` n, we say that λ dominates µ, denoted by λD µ, if

k∑
i=1

λi ≥
k∑
i=1

µi ∀k ≥ 1.

We write λB µ if λD µ and λ 6= µ.

It is easy to check that D defines a partial order on the set of partitions of n. It is coarser than
the lexicographic order λ ≥lex µ (i.e. there is some k ≥ 1 such that λi = µi for all 1 ≤ i ≤ k and
λk+1 ≥ µk+1), which is a total order; in other words, λD µ ⇒ λ ≥lex µ.

Roughly, λD µ if λ is relatively “fat and short” and µ is relatively “thin and tall”.

Lemma 29.6. Suppose that t is a λ-tableau and t′ is a µ-tableau for some λ, µ ` n. Then the following
hold.

(1) If λ = µ, then κt{t′} = ±κt{t} = ±et. In particular, for any v ∈Mλ, we have κtv ∈ Ket.

(2) If κt{t′} 6= 0, then λD µ.

Proof (1) Notice that for σ ∈ Ct, we have

κtσ =
∑
τ∈Ct

sgn(τ)τσ =
∑

π=τσ∈Ct

sgn(σ−1) sgn(π)τσ = sgn(σ)κt.

Since we have {t′} = σ{t} for some σ ∈ Ct, and so

κt{t′} = κtσ{t} = sgn(σ)κt{t} = ±et.

The last part follows from the above calculation by using the definition that v is a linear combination
of λ-tabloids {t′}.

(2) We show that, for every i ≥ 1, the numbers in the i-th row of t′ lie in different columns in t. In
which case, the claim is a direct consequence of the “Basic Combinatorial Lemma” – see James’ book
3.7 (it is possible to just think carefully about the combinatorics and convince yourself that this claim
implies λE µ).

Indeed, suppose on the contrary that there is some a, b ∈ t′i,− such that a, b ∈ t−,j for some j. This
means that we have (a, b) ∈ Ct. Take a transversal {σ1, . . . , σm} of 〈(a, b)〉 in Ct, then we have
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Ct = tmi=1σi〈(a, b)〉. Hence, we get that

κt =

m∑
i=1

(
sgn(σi)σi + sgn(σ(a, b))σi(a, b)

)
=
∑
i=1

sgn(σi)σ
(
1− (a, b)

)
=
(∑
i=1

sgn(σi)σ
)

(1− (a, b)).

The condition a, b ∈ t′i,− implies that

(1− (a, b)){t′} = {t′} − {(a, b)t′} = {t′} − {t′} = 0,

and so
κt{t′} =

(∑
i=1

sgn(σi)σ
)

(1− (a, b)){t′} = 0,

contradicting the assumption.

Proposition 29.7. The following hold for a non-zero homomorphism 0 6= f ∈ HomKSn(Mλ,Mµ).

(1) If λ = µ, then f |Sλ = αιλ for some α ∈ K and ιλ : Sλ →Mλ the canonical inclusion.

(2) If Sλ * Ker(f), then λD µ.

Proof (1) Take any λ-tableau t. By Lemma 29.6 (1), we have κtv ∈ Ket for any v ∈Mλ. Now take
v = f({t}), then it follows that

f(et) = f(κt{t}) = κtf({t}) = αet for some α ∈ K.

Hence, we have f(u) = αu for all u ∈ KSn ·et, but Sλ = KSn ·et by Lemma 29.3.

(2) Take u ∈ Sλ such that f(u) 6= 0 (which exists by the assumption). Since Sλ is spanned by
polytabloids et = κt{t}, we can write

f(u) = f(
∑
t

αtet) =
∑
t

αtκtf({t})

for some αt ∈ K. Since Mµ is spanned by µ-tabloids, we can write

κtf({t}) = κt
∑
t′

βt′{t′} =
∑
t′

βt′(κt{t′})

for some βt′ ∈ K. Hence, f(u) 6= 0 implies that there is some t, t′ with κt{t′} 6= 0. Now the claim
follows from Lemma 29.6 (2).

Theorem 29.8. Suppose char(K) - |Sn |. Then the following holds for any λ, µ ` n.

(1) Sλ ∼= Sµ if, and only if, λ = µ.

(2) Sλ is simple.

(3) HomKSn(Sλ,Mλ) ∼= EndKSn(Sλ) ∼= K.

Proof (1) ⇐: Trivial.

⇒: Take an isomorphism f : Sλ → Sµ of KSn-modules. Since we are under good characteristic,
meaning that Maschke’s theorem applies, we have Mλ = Sλ ⊕ U for some KSn-module U . Then
by composing with the canonical inclusion ιλ : Sλ ↪→ Mλ and projection πλ : Mλ � Sλ onto direct
summand, we have a homomorphism

f̂ : Mλ � Sλ
f−→∼= Sµ ↪→Mµ
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Now f being an isomorphism implies that Ker(f̂) + Sλ, and so we can apply Proposition 29.7 (2) to
get that λD µ.

Similarly, since we also have an isomorphism Sµ → Sλ, the same argument applies to get µD λ.

(2) Suppose on the contrary that there is a non-zero submodule V of Sλ. By Maschke’s theorem,
we can then decompose Sλ = V ⊕ V ′ for some non-zero V ′ and Mλ = V ⊕ V ′ ⊕ U for some U .
Now composing with canonical projection and inclusions (as in (1)), we can construct a non-zero
endomorphism

f : Mλ � V ↪→Mλ.

By Proposition 29.7 (1), we have that f |Sλ = αιλ for some α ∈ K. This contradicts the construction
which guarantees f |V ′ = 0.

(3) For f : Sλ →Mλ, precomposing with the canonical projection πλ : Mλ � Sλ yields f̂ := f ◦ πλ ∈
EndKSn(Mλ). It then follows from Proposition 29.7 (1) that

αιλ = f̂ |Sλ = f̂ ◦ ιλ = f ◦ πλ ◦ ιλ = f ◦ idSλ = f

for some α ∈ K. Thus we have the following (K-linear) bijections

HomKSn(Sλ,Mλ) oo
∼ // HomKSn(Sλ, Sλ) oo

∼ // K

f oo // α idSλ oo // α,

as required.

Remark 29.9. The theorem fails in general characteristic:

(1) fails, for example, already in char(K) = 2 (and n ≥ 2), we have S(n) ∼= S(1n) (as we have already
seen in Homework 1 that trivial and sign representations are isomorphic in this setting).

(2) fails, for example, when n = p = char(K) > 0, then for λ = (p− k, 1k) with 1 ≤ k < p− 1, it turns
out that Sλ is indecomposable and admits a filtration

S(p−k,1k) ⊃ D(p−k+1,1k−1) ⊃ 0

with D(p−k,1k) := S(p−k,1k)/D(p−k+1,1k−1
a simple module for all 1 ≤ k < p.

Corollary 29.10. When char(K) - n! (or equivalently, charK > n or charK = 0), {Sλ | λ ` n} is
the complete set of (isoclass representatives of) simple KSn-modules. Moreover, we have

Mµ ∼=
⊕
λDµ

(Sλ)⊕Kλµ

for some Kλµ ∈ Z≥0 with Kµµ = 1.

Proof The first part follows from the fact that the number of partitions is the number of conjugacy
classes of Sn, and that the Specht modules are pairwise non-isomorphic simple modules by Theorem
29.8.

For the second part, Mashcke’s theorem applies and then we can get the decomposition with direct
sum over all λ ` n instead of λE µ, and that

Kλµ = [Mµ : Sλ] = dimK HomKSn(Sλ,Mµ).

In particular, it follows from Theorem 29.8 (3) that Kµµ = 1.

Suppose that Kλµ 6= 0. Then we have a non-zero homomorphism Sλ → Mµ, which precompose with
the canonical projection πλ : Mλ → Sλ to a non-zero homomorphism f ∈ HomKSn(Mλ,Mµ). Hence,
it follows from Proposition 29.7 (2) that λD µ.
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Remark 29.11. Although the proof above relies on Maschke’s theorem, over arbitrary characteristic,
Mµ still admits a filtration with subquotients in Specht that satisfy the same ordering property – in
particular, one also has p-Kostka numbers for p the characteristic of the ground field.

The number Kλµ is called Kostka number, and has a combinatorial interpretation, namely, it is the
number of semi-standard λ-tableaux of type µ. We will not explain these for time reason; the point
is just that this number can be combinatorially calculated.

Consider the character χλ of Sλ and the permutation character πλ associated to Mλ. Note that the
latter can be combinatorially calculated. By Corollary 29.10, we have

πλ = χλ +
∑
λCµ

Kµλχµ.

and so one can inductively (along the dominance order starting from λ = (n)) calculate χλ so long as
the Kostka numbers are known.

Of course, this way to calculate χλ is too slow. There is a more direct formula given by Munaghan-
Nakayama rule which says that the value of character χλ at a cycle-type µ can be calculated by
recursively removing rim hooks of length µi from λ and look at the heigh of such rim hooks. The
character value is intimately related to symmetric polynomials, given by the Frobenius character
formula. For time constraint, we will not explain any more details on these subjects – or perhaps leave
them to a future course dedicated to symmetric group representation.

Finally, we just mention that we defined Specht module by a spanning set of polytabloids, but one
can ask if this can be refined to a basis – the answer is affirmative.

Theorem 29.12. The Specht module has a K-basis given by the set of standard λ-polytabloids, i.e.
et for which t is a standard λ-tableau.

The strategy to prove this is to introduce a partial order on λ-tabloids, so that standard λ-tableaux
form the maximal elements of this order with the property that {t′} appears in et for standard t
implies {t}D {t′}. With this, it is relatively easy to show linear independence. For spanning, one uses
the so-called Garnir relation to alter (or “SugarCrash-ing” to) non-standard λ-tableaux to a standard
one in a way that is “compatible” with the polytabloids.

30 Branching rule

We look at the decomposition of ResGH(V ) in the case when G = Sn = S([1, n]), H = Sn−1 =
S([1, n− 1]), and V = Sλ. Using Frobenius reciprocity, we can deduce also IndGH(W ) too.

Definition 30.1. For a partition λ ` n, a removable node of (the Young diagram of) λ is x := (i, λi)
(hence, the last node in the i-th row) such that λ \ x := (λ1, . . . , λi − 1, . . . , λk) ` n − 1. Dually, an
addable node is one given by x := (i, λi + 1) such that λ ∪ x := (λ1, . . . , λi + 1, . . . , λk) ` n− 1.

Theorem 30.2 (Branching rule). When charK - n!, the following hold for any λ ` n.

(1) ResSnSn−1
(Sλ) ∼=

⊕
x S

λ\x where x varies over all removable nodes of λ.

(2) Ind
Sn+1

Sn
(Sλ) ∼=

⊕
x S

λ∪x where x varies over addable nodes of λ.

Proof For simplicity, we write Resnn−1 and Indn+1
n instead of having S everywhere. For (1), by

Proposition 8.5, it is enough to show that HomKSn−1(Sµ,Resnn−1(Sλ)) 6= 0 for any µ = λ \ x with x
a removable node. Under the assumption that (1) holds, then by Frobenius reciprocity we have

HomKSn−1(Sµ,Resnn−1(Sλ)) ∼= HomKSn(Indnn−1(Sµ), Sλ).
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Note that µ = λ \ x if and only if λ = µ ∪ x, and so (2) follows as well.

Now we show (1). Since Specht is spanned by polytabloids, we can first think about relating individual
λ-polytabloids with λ \ x-polytabloids. Suppose that we have removable nodes x1, x2, . . . , xm at rows
1 ≤ r1 < r2 < · · · < rm ≤ n respectively. Let λ \ xi. Consider the K-linear map

θi : Mλ →Mµ(i) given by linearly extending {t} 7→

{
{t′}, if n ∈ tri,−;

0, otherwise,

where t′ := t \ t(xi) is the µ-tableau obtained from t by removing xi and its entry. We can think of θi
as focusing the restriction operation on the tabloids that we are interested in; note that this is not a
module homomorphism.

Now let us look at how θi evaluates on the polytabloids. Since we are only interested in Sλ, which
has basis given by standard polytabloid, we can focus on a standard tableau t. There are two cases
we need to consider.

• n appears at row ri: If θi({σt}) 6= 0, then σ fixes n, and so we have θi({σt}) = {σt′}. In
particular, we have θi(et) = et′ .

• n appears at row rj for some j < i: Since t is standard, n must be at the bottom of a column.

This means that n is in the same or a higher row in {σt} for all σ ∈ Ct, and so θi(et) = 0.

Roughly, the above says that θi picks out Sλ\xi when we restrict Sλ to Sn−1. Let us justify this more
rigourously. We are going to construct a chain of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = Sλ

so that Vi/Vi−1
∼= Sλ\xi as KSn−1-module. For each 1 ≤ j ≤ m, consider the following K-linear

subspace

Vj := K

{
et

∣∣∣∣ t : standard λ-tableau s.t.
the node t−1(n) = (rk,m) is removable with k ≤ j

}
⊂Mλ.

The two cases considered in the previous paragraph, along with Sλ\xi given by the span of standard
polytabloids, imply that

θi(Vi) = Sλ\xi and θi(Vi−1) = 0

respectively. Consequently, we have a chain of vector spaces

0 = V0 ⊂ Ker(θ1|V1) ⊂ V1 ⊂ Ker(θ2|V2) ⊂ · · · ⊂ Vm = Sλ. (30.1)

By rank-nullity theorem, we have

dimK
Vi

Ker(θi|Vi)
= dimK θi(Vi) = dimK S

λ\xi ,

By Theorem 29.12, we have

dimK S
λ = #{standard λ-tableaux} =

k∑
i=1

#{standard λ \ xi-tableaux} =

k∑
i=1

dimK S
λ\xi .

On the other hand, dimK S
λ is equal to the sum of all the dimension of subsequent quotients in the

above chain (30.1), i.e.

m∑
i=1

(
dimK

Vi
Ker(θi|Vi)

+ dimK
Ker(θi|Vi)
Vi−1

)
= dimK S

λ.

Thus, we have Ker(θ|Vi) ∼= Vi−1, which means that Vi/Vi−1
∼= Vi/Ker(θi|Vi) ∼= Sλ\xi for all 1 ≤ i ≤ m.

It follows by induction on i and Maschke’s theorem that Vi/Vi−1
∼= Sλ\xi as KSn−1-module and a

direct summand of Resnn−1(Sλ) for all 1 ≤ i ≤ m, as required.
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Remark 30.3. The argument does not really use the good characteristic assumption until the final
part. In particular, the analogous result in arbitrary field is just that Res(Sλ) admits a filtration with
subquotients Sλ\xm , Sλ\xm−1 , · · · , Sλ\x1 (note that λ \ xmB λ \ xm−1B · · ·B λ \ x1); likewise, Ind(Sλ)
is also filtered by Sλ∪x.

31 Kazhdan-Lusztig’s cells

Suppose, for simplicity, that K is algebraically closed with good characteristic.

We knew from Theorem 10.12 that the group algebra KG is a direct product of matrix rings over K,
and each of such matrix ring corresponds to the endomorphism ring of a simple KG-module. When
G = Sn, the simple KG-modules are given by the Specht modules Sλ, and so we have

dimK KG (= n!) =
∑
λ`n

(dimK S
λ)2.

Since Sλ has a basis given by standard λ-polytabloid, i.e. indexed by standard λ-tableaux, one should
expect a bijection

Sn ↔
∐
λ`n

SYTλ × SYTλ, σ 7→ (P (σ), Q(σ))

This bijection is called the Robinson-Schensted-Knuth (RSK) correspondence. Note that

#{σ ∈ Sn | σ of cycle-type λ} 6= #{standard λ-tableaux}2 = (dimK S
λ)2

usually – for example, take λ = (n), then dimK S
λ = 1 and the number of elements of cycle-type λ is

precisely (n− 1)!.

Example 31.1. Consider S3 = 〈s = (1, 2), t = (2, 3) | s2 = 1 = t2, sts = tst〉. Then we have

e

s

HH

t

VV

ts

AAOO

st

]] OO

sts

HHVV

RSK7→

1 2 3 , 1 2 3

1 3
2 ,

1 3
2

1 2
3 ,

1 2
3

1 2
3 ,

1 3
2

1 3
2 ,

1 2
3

1
2
3 ,

1
2
3

With RSK correspondence in hand, one can ask if there is a construction of Sλ in terms of elements
of KSn. As such, the better question to ask is the following: Is there a special basis {Hx | x ∈ Sn}
of KSn (possibly with K = Z) so that, for each fixed λ ` n and fixed standard λ-tableau t,

Sλ ∼= K{Hx | P (x) = t}
submod
⊂ KSn and K{Hx | shape(P (x)) = λ} ∼= (Sλ)⊕ dimK Sλ?

One (actually the best) answer of this is given by the Kazhdan-Lusztig’s basis.
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If one is familiar with Lie theory, then one knows that Sn+1 is the so-called Coxeter group W = W (An)
of type An. That is, we have a presentation of the form

Sn = W (An−1) :=

〈
s1, . . . , sn−1

∣∣∣∣∣∣
s2
i = 1
sisj = sjsi for |i− j| > 1
sisi+1si = si+1sisi+1 for 1 ≤ i < n− 1

〉
,

where si = (i, i+ 1) is the simple transposition.

Definition 31.2. Let S := {si | 1 ≤ i < n} be the set of simple transposition. Suppose that si1si2 · · · sil
is a word in S that is equal to σ ∈ Sn. If the length l is the shortest possible, then we called it a
reduced expression of σ, and its length `(σ) the Bruhat length. The Bruhat order on Sn is a partial
order where σ ≤ τ if there is a reduced expression of τ with a subword being a reduced expression of
σ, i.e.

τ = a1a2 · · · al and σ = ai1ai2 · · · aik
with ai ∈ S for all 1 ≤ i ≤ l and 1 ≤ i1 < i2 < · · · < ik ≤ l.
Remark 31.3. This is not the usual definition of Bruhat order; but we use it to shorten exposition.
Note also that

(σ ≤L τ) or (σ ≤R τ) ⇒ (σ ≤ τ) ⇒ ( `(σ) ≤ `(τ) ).

One thing that Kazhdan-Lusztig have proved about their basis is the unitriangularity of the associated
change of basis matrix, and moreover unique under a certain condition.

In the following, we consider an involutive (meaning order is zero) ring anti-automorphism (‘anti-’
means that it reverse multiplication order)

(·) : ZSn → ZSn given by linearly extending σ → σ−1 ∀σ ∈ Sn .

Theorem 31.4 (Kazhdan-Lusztig). There is a unique Z-basis {Hx | x ∈ Sn} of ZSn such that

Hx = Hx and Hx = x+
∑
y<x

py,xHy

with py,x ∈ Z.

Remark 31.5. (1) They even conjectured that py,x ≥ 0 – this is eventually proved by Soergel with
highly sophisticated idea called “categorification”. Namely, one needs to replace the group
algebra ZSn by a monoidal category (S,⊗), and the basis element by (indecomposable) objects
in a ways so that multiplication in ZSn correspond to tensor product ⊗.

(2) Categorification is an interesting idea where we make mathematical structure way more com-
plicated but the extra requirement on symmetries allow us to deduce properties that is hard to
uncover in the original setting. The simplest example is that the semiring of natural numbers
can be categorified by the category of finite dimensional vector spaces. Another interesting ex-
ample that is of heavy influence to modern representation theory is the categorification of Jones
polynomial by Khovanov homology, and variance of such – this is currently one rather active
theme of research in algebraic Lie theory.

(3) Properties (such as efficient computation) about py,x (called Kazhdan-Lusztig’s polynomials and
their various generalisations) are still actively under research at the time of this notes is written.
Recent studies suggest that Machine Learning can be helpful.

The Kazhdan-Lusztig basis can be computed inductively with He = e := 1Sn , Hs = s for all s ∈ S,
and the following formula (shown by Kazhdan-Lusztig):

HxHs =

{
Hxs +

∑
y<x,ys<y µy,xHy, if xs > x;

2Hx, if xs < x,
(31.1)
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for any x ∈ Sn and s ∈ S. There is a left version too:

HsHx =

{
Hsx +

∑
y<x,sy<y µy,xHy, if sx > x;

2Hx, if sx < x.
(31.2)

Note the two µy,x’s (these things are called Lusztig’s µ-functions) are the same regardless if one works
with the left or the right version.

Example 31.6. We have the following multiplication table for n = 3:

He Hs Ht Hst Hts Hsts

He He Hs Ht Hst Hts Hsts

Hs Hs 2Hs Hst 2Hst Hsts +Hs 2Hsts

Ht Ht Hts 2Ht Hsts +Ht 2Hts 2Hsts

Definition 31.7. We define three preorders (not partial order!) on x ∈ Sn as follows.

• x ≤L y if there is z ∈ Sn such that HzHx = λHy + α for some λ ∈ Z and α ∈ ZSn.

• x ≤R y if there is z ∈ Sn such that HxHz = λHy + α for some λ ∈ Z and α ∈ ZSn.

• x ≤LR y if x ≤L or x ≤R, or equivalently, if there is some z, z′ ∈ Sn such that Hz1HxHz′ =
λHy + α for some λ ∈ Z and α ∈ ZSn.

For each D ∈ {L,R,LR}, setting x ∼D y when x ≤D and y ≤D x yield an equivalence relation on
Sn. The respective equivalence classes induced are called Kazhdan-Lusztig left/right/two-sided cells.

Remark 31.8. Note that by construction ≤D becomes a partial order on Sn /∼D for each D ∈
{L,R,LR}.

Example 31.9. For n = 3, the left cells are

L1 = {e},Ls = {s, ts},Lt = {t, st},L0 = {sts}.

If we look back at Example 31.1, we see that the left cells correspond to the elements x for which Q(x)
remains unchanged – this is not a coincidence!

Proposition 31.10. For x, y ∈ Sn, the following hold.

(1) x ∼R y ⇔ P (x) = P (y).

(2) x ∼L y ⇔ Q(x) = Q(y).

(3) x ∼LR y ⇔ shape(P (x)) = shape(P (y)).

For any fixed x, z ∈ Sn, now we have

HzHx =

(∑
y∼Lx

λy,xHy

)
+

∑
y≤Lx

λy,xHx


with λy,x ∈ Z. Thus, we can define some ZSn-modules as follows.

Definition 31.11. Let L be a left cell in Sn. The cell module CL of Sn associated to L is the
ZSn-module given by the quotient

Z{Hx | x ∈ L}/Z{Hy | x ≤L y and x �L y}.

Remark 31.12. The formulation of cell modules is possible for any Coxeter groups. Moreover, this
can be done on a wider class, namely, a certain deformation of group algebras called Hecke algebra of
Coxeter groups. The deformation parameter q is why py,x is not just an integer but a polynomial (in
q) in general.

Exercise 31.13. Compute all cell modules CL for n = 3.

Theorem 31.14. CL ∼= SλZ as ZSn-modules, where λ = shape(Q(x)) for any x ∈ L.
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