Ex 1.

- (i) Show that for a character $\chi = \chi_V$, Ker $\chi := \{g \in G \mid \chi(g) = \chi(1)\}$ is a normal subgroup of G.
- (ii) Show that $\chi_{\operatorname{Hom}_{\mathbb{C}}(V,W)} = \overline{\chi_V}\chi_W$.
- (iii) For a $\mathbb{C}H$ -module U and $g \in G$, consider the set

$${}^{g}U := \{gu \mid u \in U\}.$$

Show that

$$h(gu) := g((g^{-1}hg) \cdot u)$$

defines an *H*-action on ${}^{g}U$. Show also that isomorphism of *KH*-modules ${}^{g_1}U \cong {}^{g_2}U$ implies that ${}^{gg_1}U \cong {}^{gg_2}U$ for all $g \in G$.

(iv) (Exercise 23.11 of lecture notes) Consider a left transversal t_1, t_2, \ldots, t_k of $H \leq G$ and a $\mathbb{C}H$ -module U. For $g \in G$ and $1 \leq i \leq k$, write $gt_i = t_j h$ with $h \in H$. Show that, for $u \in U$, the following

$$g(t_i \otimes u) := t_j \otimes (t_j^{-1}gt_i)u$$

defines a left G-action on $\operatorname{Ind}_{H}^{G}(U) := \mathbb{C}G \otimes_{\mathbb{C}H} U.$

(v) Suppose that $H \leq G$ is a subgroup. Show that for $\mathbb{C}H$ -module W, we have $\operatorname{Ind}_{H}^{G}(W^{*}) \cong (\operatorname{Ind}_{H}^{G}(W))^{*}$ as $\mathbb{C}G$ -module.

Ex 2. Let $V := \mathbb{C}\{v_1, \ldots, v_n\}$ be an *n*-dimensional \mathbb{C} -vector space with basis $\{v_1, \ldots, v_n\}$. Consider the tensor product $V^{\otimes 2} := V \otimes_{\mathbb{C}} V$ and the linear map $\tau : V^{\otimes 2} \to V^{\otimes 2}$ given by linearly extending

$$\tau: v_i \otimes v_j \mapsto v_j \otimes v_i$$

for all $1 \leq i, j \leq n$. Let

$$S^{2}(V) := \{ v \in V^{\otimes 2} \mid \tau(v) = v \} \text{ and } \Lambda^{2}(V) := \{ v \in V^{\otimes 2} \mid \tau(v) = -v \}.$$

(a) Fix a pair $1 \le i, j \le n$ and let $v_{\pm} := \frac{1}{2}(v_i \otimes v_j \pm v_j \otimes v_i)$. Show that $\tau(v_{\pm}) = \pm v_{\pm}$.

- (b) Show that $\{v_i v_j := \frac{1}{2}(v_i \otimes v_j + v_j \otimes v_i) \mid 1 \le i \le j \le n\}$ form a basis of $S^2(V)$ and compute $\dim_{\mathbb{C}} S^2(V)$.
- (c) Show that $\{v_i \wedge v_j := \frac{1}{2}(v_i \otimes v_j v_j \otimes v_i) \mid 1 \le i < j \le n\}$ form a basis of $\Lambda^2(V)$ and compute $\dim_{\mathbb{C}} \Lambda^2(V)$.
- (d) Suppose now that V is a CG-module. Show that $\tau(x) = x$ implies that $\tau(gx) = gx$. Likewse, show that $\tau(x) = -x$ implies that $\tau(gx) = -gx$.
- (e) Show that $S^2(V) \oplus \Lambda^2(V) \cong V^{\otimes 2}$ as $\mathbb{C}G$ -modules. (At least show they are isomorphic as \mathbb{C} -vector spaces if you cannot do it on the $\mathbb{C}G$ -module level.)

Ex 3.

(i) A certain group G has two columns of its character table as follows:

$\begin{array}{c} g_i \\ C_G(g_i) \end{array}$	$\frac{g_1}{21}$	$g_2 \\ 7$
χ_1	1	1
χ_2	1	1
χ_3	1	1
χ_4	3	ζ
χ_5	3	$\overline{\zeta}$

where $g_1 = 1$ and $\zeta \in \mathbb{C}$.

- (a) Find ζ .
- (b) Find one other column of the character table. *Hint:* (1) Recall that if g, g^{-1} are in the same conjugacy class, then $\chi(g) \in \mathbb{R}$. (2) Recall that if χ_i irreducible, then so is $\overline{\chi_i}$. (3) $|C_G(g)| = |C_G(g^{-1})|$

 - (4) You can use $\zeta \notin \mathbb{R}$ if you cannot complete (a).
 - (5) Part (b) is not about using orthogonality relation.
- (ii) A group of order 720 has 11 conjugacy classes. Two representations of the group are known and have corresponding characters α and β with values shown in the table below. Prove that the group has an 16-dimensional irreducible representation and calculate its character.

$ C_G(g_i) $	720	48	18	8	16	6	5	6	8	48	18
α											
eta	21	1	-3	-1	1	1	1	0	-1	-3	0

Ex 4.

- (i) Consider the alternating group \mathfrak{A}_4 .
 - (a) Write down all conjugacy classes of \mathfrak{A}_4 .
 - (b) By using permutation character associated to $\{1, 2, 3, 4\}$ or using restriction from \mathfrak{S}_4 , show that there is a degree 3 irreducible character of \mathfrak{A}_4 .
 - (c) Compute the character table of \mathfrak{A}_4 . Explain your reasoning.
- (ii) Consider the dihedral group $D_{2n} = \langle a, b \mid a^n = 1 = b^2, bab = a^{-1} \rangle$ of order 2n for n = 2meven.
 - (a) Write down all conjugacy classes of D_{2n} . Hint: There are m + 3 of them, of which m - 1 (resp. m + 1 = 3) of them has size 2 when n > 4 (resp. n = 4).
 - (b) Find the derived subgroup D'_{2n} of D_{2n} and compute its quotient.

- (c) Show that there are precisely 4 (up to isomorphism) one-dimensional representations of D_{2n} .
- (d) Compute the induced characters of the irreducible characters of $\langle a \rangle \leq D_{2n}$.
- (e) Compute the character table of D_{2n} . Explain your reasoning.

Deadline: 5th January, 2024 Submission / Enquiry: E-mail to (replace at by @) aaron.kychan at gmail.com