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Convention

Throughout the course, k will always be a field. All rings are unital and associative. We only really
work with artinian rings (but sometimes noetherian is also OK). We always compose maps from right
to left.

1 Reminder on some basics of rings and modules

Definition 1.1. Let R be a ring. A right R-module M is an abelian group (M,+) equipped with a
(linear) R-action on the right of M · : M ×R→M , meaning that for all r, s ∈ R and m,n ∈M , we
have

• m · 1 = m,

• (m+ n) · r = m · r + n · r,

• m · (r + s) = m · r +m · s,

• m(sr) = (ms)r.

Dually, a left R-module is one where R acts on the left of M (details of definition left as exercise).
Sometimes, for clarity, we write MA for right A-module and AM for left A-module.

Note that, for a commutative ring, the class of left modules coincides with that of right modules.

Example 1.2. R is naturally a left, and a right, R-module. Both are free R-module of rank 1. Some-
times this is also called regular modules but it clashes with terminology used in quiver representation
and so we will avoid it.

In general, a free R-module F is one where there is a basis {xi}i∈I such that for all x ∈ F , x =∑
i∈I xiri with ri ∈ R. We only really work with free modules of finite rank, i.e. when the indexing

set I is finite. In such a case, we write Rn.

Convention. All modules are right modules unless otherwise specified.

Definition 1.3. Suppose R is a commutative ring. A ring A is called an R-algebra if there is a (unital)
ring homomorphism θ : R→ A with image f(R) being in the center Z(A) := {z ∈ A | za = az ∀a ∈ A}
of A. In such a case, A is an R-module and so we simply write ar for a ∈ A, r ∈ R instead of aθ(r).

An (unital) R-algebra homomorphism f : A→ A′ is a (unital) ring homomorphism f that intertwines
R-action, i.e. f(ar) = f(a)r.

The dimension of a k-algebra A is the dimension of A as a k-vector space; we say that A is finite-
dimensional if dimkA <∞.
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Note that commutative ring theorists usually use dimension to mean Krull dimension, which has a
completely different meaning.

Example 1.4. Every ring is a Z-algebra.

The matrix ring Mn(R) given by n-by-n matrices with entries in R is an R-algebra.

We will only really work with k-algebras, where k is a field. But it worth reminding there are many
interesting R-algebras for different R, such as group algebra. Recall that the characteristic of R,
denoted by charR, is 0 if the additive order of the identity 1 is infinite, or else the additive order itself.

Example 1.5. Let G be a finite (semi)group and R a commutative ring. Let A := R[G] be the free
R-module with basis G, i.e. every a ∈ A can be written as the formal R-linear combination

∑
g∈G λgg

with λg ∈ R. Then group multiplication extends (R-linearly) to a ring multiplication on R[G], making
A an R-algebra.

Example 1.6. Recall that the direct product of two rings A,B is the ring A×B = {(a, b) | a ∈ A, b ∈
B} with unit 1A×B = (1A, 1B). It is straightforward to check that if A,B are R-algebras, then A×B
is also an R-algebra.

Definition 1.7. A map f : M → N between right R-modules M,N is a homomorphism if it is a
homomorphism of abelian groups (i.e. f(m + n) = f(m) + f(n) for all m,n ∈ M) that intertwines
R-action (i.e. f(mr) = f(m)r for all m ∈ M and r ∈ R). Denote by HomR(M,N) the set of all
R-module homomorphisms from M to N . We also write EndR(M) := HomR(M,M).

Lemma 1.8. HomR(M,N) is an abelian group with (f + g)(m) = f(m) + g(m) for all f, g ∈
HomR(M,N) and all m ∈ M . If R is commutative, then HomR(M,N) is an R-module, namely,
for a homomorphism f : M → N and r ∈ R, the homomorphism fr is given by m 7→ f(mr).

Definition 1.9. EndR(M) is an associative ring where multiplication is given by composition and
identity element being idM . We call this the endomorphism ring of M .

Lemma 1.10. If A is an R-algebra over a commutative ring R, then any right A-module is also an
R-module, and HomA(M,N) is also an R-module (hence, EndR(M) is an R-algebra).

Example 1.11. A ∼= EndA(A) given by a 7→ (1A 7→ a) is an isomorphism of rings (or of R-algebras
if A is an R-algebra).

Exercise 1.12. Recall that Rop is the opposite ring of R, whose underlying set is the same as that of
R with multiplication (a ·op b) := b · a. A representation of R is a ring homomorphism

ρ : Rop → EndZ(M), r 7→ ρr,

for some abelian group (M,+). A homomorphism f : ρM → ρN of representations ρM : Rop →
EndZ(M), ρN : Rop → EndZ(N) given by an abelian group homomorphism f : M → N that intertwines
R-action, i.e. ρN (r) ◦ f = f ◦ ρM (r) for all r ∈ R.

Eplain why a representation of R is equivalent to a right R-module; and why homomorphisms corre-
spond.
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2 Indecomposable modules and Krull-Schmidt property

Recall that an R-module M is finitely generated if there exists as surjective homomorphism Rn�M ,
or equivalently, there is a finite set X ⊂ M such that for any m ∈ M , we have m =

∑
x∈X xrx for

some rx ∈ R.

Notation. We write modA for the collection of all finitely generated right A-modules.

We recall two types of building blocks of modules. The first one is indecomposability.

Definition 2.1. Let M be a R-module and N1, . . . , Nr be submodules. We say that M is the direct
sum N1⊕· · ·⊕Nr of the Ni’s if M = N1 + · · ·+Nr and Nj∩(N1 + · · ·+Nĵ+ · · ·Nr) = 0. Equivalently,
every m ∈M can be written uniquely as n1 + n2 + · · ·+ nr with ni ∈ Ni for all i. In such a case, we
write M ∼= N1 ⊕ · · · ⊕Nr. Each Ni is called a direct summand of M .

M is called indecomposable if M ∼= N1 ⊕N2 implies N1 = 0 or N2 = 0.

We say that M =
⊕m

i=1Mi is an indecomposable decomposition (or just decomposition for short if
context is clear) of M if each Mi is indecomposable. Such a decomposition is said to be unique if for
any other decomposition M =

⊕n
j=1Nj, we have n = m and the Nj’s are permutation of the Mi’s.

Convention. We write (n1, . . . , nr) instead of n1+· · ·+nr with ni ∈ Ni for a direct sum N1⊕· · ·⊕Nr.

We will only work with direct sum with finitely many indecomposable direct summands.

Example 2.2. Suppose RR is indecomposable as an R-module. Then the free module R⊕R⊕· · ·⊕R
with R copies of R is a decomposition of Rn.

Example 2.3. Consider the matrix ring A := Matn(k) over a field k. Let V be the ‘row space’, i.e.
V = {(vj)1≤j≤n | vj ∈ k} where X ∈ Matn(k) acts on v ∈ V by v 7→ vX (matrix multiplication
from the right). Since for any pair u, v ∈ V , there always exist X so that v = uX, we see that there
is no other A-submodule of V other than 0 or V itself. Hence, V is an indecomposable A-module.
In particular, the n different ways of embedding a row into an n-by-n-matrix yields an A-module
isomorphism between V ⊕n ∼= AA, which is the decomposition of the free A-module AA.

The above example shows indecomposability by showing that V is a simple A-module, which is
a stronger condition that we will come back later. Let us give an example of a different type of
indecomposable (but non-simple) modules.

Example 2.4. Let A = k[x]/(xk) the truncated polynomial ring for some k ≥ 2. This is an al-
gebra generated by (1A and) x, and an A-module is just a k-vector space V equipped with a linear
transformation ρx ∈ Endk(V ) (representing the action of x) such that ρkx = 0.

Consider a 2-dimensional space V = k{v1, v2} and a linear transformation

ρx =

(
0 0
1 0

)
.

If V is not indecomposable, then we have V = U1 ⊕ U2 for (at least) two non-zero submodules U1, U2.
By definition (av1 + bv2)x = (a + b)v2, and so any submodules must contains kv2, i.e. v2 spans a
unique non-zero submodules; a contradiction. Hence, V must be indecomposable.

A natural question is to ask when a decomposition of modules, if it exists, is unique up to permuting
the direct summands.

Definition 2.5. We say that an indecomposable decomposition M =
⊕m

i=1Mi is unique if any other
indecomposable decomposition M =

⊕n
j=1Nj implies that m = n and there is a permutation σ such
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that Mi
∼= Nσ(i) for all 1 ≤ i ≤ m. modA is said to be Krull-Schmidt if every finitely generated

A-module M admits a unique indecomposable decomposition.

Theorem 2.6. For a finite-dimensional algebra A, modA is Krull-Schmidt.

Remark 2.7. This is a special case of the Krull-Schmidt theorem - whose proof we will omit to save
time.

Proposition 2.8. There is a canonical R-module isomorphism

HomA(
⊕m

j=1Mj ,
⊕n

i=1Ni)
∼= //

⊕
i,j HomA(Mj , Ni)

f � // (πifιj)i,j

where ιj : Nj →
⊕

j Nj is the canonical inclusion for all j and πi :
⊕

iMi → Mi is the canonical
projection for all i.

One can think of the right-hand space above as the space of m-by-n matrix with entries in each
corresponding Hom-space.
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3 Extra: Krull-Schmidt theorem

Recall that an idempotent e ∈ R is an element with e2 = e. For example, the identity map idM ∈
EndA(M) (the unit element of the endomorphism ring) is an idempotent.

Lemma 3.1. A non-zero A-module M is indecomposable if, and only if, the endomorphism algebra
EndA(M) does not contain any idempotents except 0 and idM .

Proof ⇐: Suppose M = U ⊕ V . Then we have

a projection map πW : M �W,

and an inclusion map ιW : W ↪→M,

for W ∈ {U, V }. Both of these are clearly A-module homomorphisms. Now eW := ιWπW is an
endomorphism of M with eV = idM −eU . Since any m ∈ M can be written as u + v for u ∈ U and
v ∈ V , we have

e2
V (m) = e2

V (u+ v) = e2
V (v) = v = eV (m);

and likewise for eW , so we have idempotents different from 0 and idM when both U and V are non-zero.

⇒: Suppose that M is indecomposable, and e ∈ EndA(M) is an idempotent. Note that

(idM −e)2 = idM −e · idM − idM ·e+ e2 = idM −2e+ e = idM −e

is also an idempotent and idM = e + (idM −e). So we have M = e(M) + (idM −e)(M). We want to
show that M = e(M)⊕ (idM −e)(M), i.e. e(M)∩ (idM −e)(M) = 0. Indeed, x ∈ e(M)∩ (idM −e)(M)
means that we have e(m) = x = (idM −e)(m′) for some m,m′ ∈M , and so

x = e(m) = e2(m) = e((idM −e)(m′)) = (e(idM −e))(m′) = (e− e2)(m′) = 0(m′) = 0,

as required.

Since M is indecomposable, one of e(M) or (idM −e)(M) is zero. In the former case, we get e = 0;
whereas the latter case yields idM = e; as required.

The following is one of the main reasons why we like to consider finite-dimensional (or finite generated)
modules over finite-dimensional k-algebras.

Lemma 3.2 (Fitting’s lemma (special version)). Let M be a finite-dimensional A-module of a
finite-dimensional k-algebra, and f ∈ EndA(M). Then there exists n ≥ 1 such that M ∼= Ker(fn) ⊕
Im(fn).

Remark 3.3. The general version for rings requires M to be artinian and noetherian (i.e. ascending
and descending chains of submodules stabilises).

We omit the proof to save time. The point is really just take n large enough so that the chains of
submodules given by (Ker(fk))k and (Im(fk))k stabilises.

Corollary 3.4. Let M be a non-zero finite-dimensional A-module. Then M is indecomposable if, and
only if, every homomorphism f ∈ EndA(M) is either an isomorphism or is nilpotent.

Proof By Fitting’s lemma, for any f ∈ EndA(M), we have M ∼= Ker(fn)⊕ Im(fn) for some n ≥ 1.
So indecomposability means that one of these direct summands is is zero. If Ker(fn) = 0, then fn is
an isomorphism and so is f . If Im(fn) = 0, then fn = 0 and so f is nilpotent.

Conversely, consider an idempotent endomorphism e ∈ EndA(M). The assumption says that e is
either an isomorphism or nilpotent.
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If e is an isomorphism, then we have Im(e) = M , which means that for every m ∈ M , there is some
m′ ∈M with e(m) = e2(m′) = e(m′) = m, i.e. e = idM .

If e is nilpotent, then en = 0 for some n ≥ 1, but e = e2 = e3 = · · · = en, and so e = 0.

Hence, an idempotent endomorphism of M is either 0 or idM , which means that M is indecomposable
by Lemma 3.1.

Definition 3.5. A ring R is local if it has a unique maximal right (equivalently, left; equivalently,
two-sided) ideal.

Remark 3.6. When R is non-commutative, the ‘non-invertible elements’ are the ones that do not admit
right inverses.

Lemma 3.7. Let A be a finite-dimensional algebra and M be a finite-dimensional A-module. Then
the following hold.

(1) The following are equivalent.

• A is local (i.e. has a unique maximal right ideal).

• Non-invertible elements of A form a two-sided ideal.

• For any a ∈ A, one of a or 1− a is invertible.

• 0 and 1A are the only idempotents of A.

• A/J(A) ∼= k as rings, where J(A) is the two-sided ideal of A given by the intersection of
all maximal right (equivalently, left) ideals.

(2) M is indecomposable ⇔ EndA(M) is local.

We omit the proof to save time.

Example 3.8. Consider the upper triangular 2-by-2 matrix ring

A =

(
k k
0 k

)
=

{
(ai,j)1≤i≤j≤2

∣∣∣∣ ai,j ∈ k ∀i ≤ jai,j = 0 ∀i > j

}
.

Let M = {(x, y) ∈ k2} be the 2-dimensional space where A acts as matrix multiplication (on the
right). Suppose f ∈ EndA(M), say, f(x, y) = (ax+ by, cx+ dy) for some a, b, c, d ∈ k. Then being an
A-module homomorphisms means that

(ax+ by, cx+ dy)

(
u v
0 w

)
= f

(
(x, y)

(
u v
0 w

))
= (aux+ bvx+ wy, cux+ dvx+ dwy)

for all u, v, w, x, y ∈ k. This means that{
buy = bvx+ bwy

avx+ bvy + cxw = cux+ dvx
.

The first line yields b = 0, and the second line yields c = 0 = b and a = d. In other words,
EndA(M) ∼= k which is clearly a local algebra. Hence, M is indecomposable.

Theorem 3.9 (Krull-Schmidt). Suppose M =
⊕m

i=1Mi is an indecomposable decomposition of M .
If EndA(Mi) is local for all 1 ≤ i ≤ m, then the decomposition of M is unique.

Remark 3.10. Some people refer to this result as Krull-Remak-Schmidt theorem.

For proof, interested reader can see lecture notes from last year.
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4 Simple modules, Schur’s lemma

Definition 4.1. Let M be an R-module.

(1) M is simple if M 6= 0, and for any submodule L ⊂M , we have L = 0 or L = M .

(2) M is semisimple if it is a direct sum of simples.

Remark 4.2. In the language of representations, simple modules are called irreducible representations,
and semisimple modules are called completely reducible representations.

Remark 4.3. Note that a module is semisimple if and only if every submodule is a direct summand.

Example 4.4. Consider the matrix ring A := Matn(k) over a field k. Then the row-space repre-
sentation V is an n-dimensional simple module. Since AA ∼= V ⊕n, we have that AA is a semisimple
module.

Example 4.5. The ring of dual numbers is A := k[x]/(x2). The module (x) is simple. The regular
representation A is non-simple (as (x) = AxA is a non-trivial submodule). It is also not semisimple.
Indeed, (x) is a submodule of A, and the quotient module can be described by kv where v = 1+(x). If A
is semisimple, then the 1-dimensional space kv is isomorphic to a submodule of A. Such a submodule
must be generated by a+ bx (over A) for some a, b ∈ k. If a 6= 0, then (a+ bx)A = A. So a = 0, and
kv ∼= (x), a contradiction.

Lemma 4.6. S is a simple A-module if and only if for any non-zero m ∈ S, we have mA := {ma |
a ∈ A} = S. In particular, simple modules are cyclic (i.e. generated by one element).

Proof ⇒: mA ⊂ S is a submodule and contains a non-zero element m, so by simplicity of S we
must have mA = S.

⇐: Suppose that there is a non-zero submodule L ⊂ S. For a non-zero element m ∈ L, the assumption
says that we have mA ⊂ L ⊂ S = mA, and so L = S.

Let us see how one can find a simple module.

Definition 4.7. Let M be an A-module and take any m ∈M . The annihilator of m (in A) is the set
AnnA(m) := {a ∈ A | ma = 0}.

Note that AnnA(m) is a right ideal of A - hence, a right A-module.

Lemma 4.8. For a simple A-module S and any non-zero m ∈ S, we have S ∼= A/AnnA(m) as A-
module. In particular, if A is finite-dimensional, then every simple A-module is also finite-dimensional.

Proof Since S = mA, the element m defines a surjective A-module homomorphism f : AA → S
given by a 7→ ma. On the other hand, we have Ker(f) = AnnA(m), and so A/AnnA(m) ∼= S.

Suppose I is a two-sided ideal of A. Then we have a quotient algebra B := A/I. For any B-module
M , we have a canonical A-module structure on M given by ma := m(a + I). This is (somewhat
confusingly) the restriction of M along the algebra homomorphism A� A/I.

Lemma 4.9. Suppose B := A/I is a quotient algebra of A by a strict two-sided ideal I 6= A. If
S ∈ modB is simple, then S is also simple as A-module

Proof This follows from the easy observation that any a B-submodule of SB is also a A-submodule
of SA under restriction.
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The following easy, yet fundamental, lemma describes the relation between simple modules. Recall that
a division ring is one where every non-zero element admits an inverse (but the ring is not necessarily
commutative).

Lemma 4.10 (Schur’s lemma). Suppose S, T are simple A-modules, then

HomA(S, T ) =

{
a division ring, if S ∼= T ;

0, otherwise.

Remark 4.11. Note that if A is an R-algebra, then the division ring appearing is also an R-algebra
(since it is the endomorphism ring of an A-module). In particular, if R is an algebraically closed field
k = k, then any division k-algebra is just k itself.

Proof The claim is equivalent to saying that any f ∈ HomA(S, T ) is either zero or an isomorphism.
Since Im(f) is a submodule of T , simplicity of T says that Im(f) = 0, i.e. f = 0, or Im(f) ∼= T . In
the latter case, we can consider Ker(f), which is a submodule of S, so by simplicity of S it is either 0
or S itself. But this cannot be S as this means f = 0, hence, Im(f) ∼= T implies that Ker(f) = 0, i.e.
f is an isomorphism.

Example 4.12. In Example 3.8, we showed that the upper triangular 2-by-2 matrix ring A has a
2-dimensional indecomposable module P1 = {(x, y) | x, y ∈ k2} given by ‘row vectors’. It is straightfor-
ward to check that there is a 1-dimensional (hence, simple) submodule given by S2 := {(0, y) | y ∈ k2}.

Consider the module S1 := P1/S2. This is a 1-dimensional (simple) module spanned by, say, w with
A-action given by

w

(
a b
0 c

)
:= wa.

Consider a homomorphism f ∈ HomA(S1, S2). This will be of the form w 7→ (0, y) for some y ∈ k
and has to satisfy

(0, ya) = (0, y)a = f(wa) = f(w

(
a b
0 c

)
) = f(w)

(
a b
0 c

)
= (0, y)c = (0, yc)

for any a, b, c ∈ k. Hence, we must have y = 0, which means that f = 0. In particular, by Schur’s
lemma S1 � S2.

Lemma 4.13. Consider a semisimple A-module M = S1 ⊕ · · · ⊕ Sn with Si ∼= S for all i. Then
EndA(M) ∼= Matn(D), where D := EndA(S) for some i.

Proof We have canonical inclusion ιj : Sj ↪→M and projection πi : M�Si. So for f ∈ EndA(M),
we have a homomorphism πifιj : Sj → Si, and by Schur’s lemma, this is an element of D. Now we
have a ring homomorphism

EndA(M)→ Matr(D), f 7→ (πifιj)1≤i,j≤r,

which is clearly injective. Conversely, for (ai,j)1≤i,j≤r ∈ Matr(D), we have an endomorphism M
πj
�

Sj
ai,j→ Si

ιi
↪→M , which yields the required surjection.

Example 4.14. For a tautological example, take A = k to be just a field. Then we have a 1-
dimensional simple A-module S = k with EndA(S⊕n) = Matn(EndA(k)) = Matn(k). Note that now
we have an n-dimensional simple Matn(k)-module (given by the row vectors).
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5 Quiver and path algebra

Definition 5.1. A (finite) quiver is a datum Q = (Q0, Q1, s, t : Q1 → Q0) for finite sets Q0, Q1. The
elements of Q0 are called vertices and those of Q1 are called arrows. The source (resp. target)of an
arrow α ∈ Q1 is the vertex s(α) (resp. t(α)).

This is equivalent to specifying an oriented graph (possibly with multi-edges and loops); Gabriel coined
the term quiver as a way to emphasise the context is not really about the graph itself.

Definition 5.2. Let Q be a quiver.

• A trivial path on Q is a “stationary walk at i”, denoted by ei for some i ∈ Q0.

• A path of Q is either a trivial path or a word α1α2 · · ·α` of arrows with s(αi) = t(αi+1).

The source and target functions extend naturally to paths, with s(ei) = i = t(ei). Two paths p, q can
be concatenated to a new one pq if t(p) = s(q); note that our convention is to read from left to right.

Definition 5.3. The path algebra kQ of a quiver Q is the k-algebra whose underlying vector space is
given by

⊕
p:paths of Q kp, with multiplication given by path concatenation. That is x ∈ kQ is a formal

linear combinations of paths on Q.

Note that eiej = δi,jei, where δi,j = 1 if i = j else 0. In other words, ei is an idempotent of the path
algebra kQ. Moreover, we have an idempotent decomposition

1kQ =
∑
i∈Q0

ei

of the unit element of kQ.

Example 5.4. Consider the one-looped quiver, a.k.a. Jordan quiver,

Q =
(
•

α

��

)
Then kQ has basis {αk | k ≥ 0} (note that the trivial path at the unique vertex is the identity element).
Then kQ ∼= k[x].

An oriented cycle is a path of the form v1 → v2 → · · · vr → v1, i.e. starts and ends at the same vertex.
If Q does not contain any oriented cycle, we say that it is acyclic.

Proposition 5.5. kQ is finite-dimensional if, and only if, Q is finite acyclic.

Proof If there is an oriented cycle c, then ck ∈ kQ for all k ≥ 0, and so kQ is infinite-dimensional.
Otherwise, there are only finitely many paths on Q.

Example 5.6. Consider the linearly oriented ~An-quiver

Q = ~An = 1
α1−→ 2

α2−→ · · · αn−1−−−→ n.

Then the path algebra kQ has basis {ei, αj,k | 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ n}, where αj,k := αjαj+1 · · ·αk.

Consider the upper triangular n-by-n matrix ring
k k · · · k
0 k · · · k

0 0
. . .

...
0 0 0 k

 =

{
(ai,j)1≤i≤j≤n

∣∣∣∣ ai,j ∈ k ∀i ≤ jai,j = 0 ∀i > j

}
.
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Denote by Ei,j the elementary matrix whose entries are all zero except at (i, j) where it is one. This
ring is isomorphic to kQ via Ei,i 7→ ei and Ei,j 7→ αi,j−1 for 1 ≤ j < k ≤ n.

From now on, we will focus in the following setting.

Assumption 5.7. (1) Quivers are always finite.

(2) Modules (and representations) are finitely generated (which is equivalent to finite-dimensional
when the algebra is so).

6 Duality

For a quiver Q, the opposite quiver Qop has the same set of vertices with the reverse direction of
arrows, i.e. Qop

0 = Q0, Q
op
1 = Q1, sQop = tQ, and tQop = sQ.

Exercise 6.1. Show that there is a canonical isomorphism (kQ)op ∼= k(Qop).

Let M be a finite-dimensional A-module. Then we have a dual space

D(M) := M∗ := Homk(M, k),

which has a natural Aop-module structure, namely, (a·f)(m) := f(ma) for any a ∈ A, f ∈M∗,m ∈M .
Moreover, for an A-module homomorphism θ : M → N , we have also an Aop-module homomorphism
θ∗ : N∗ →M∗ with θ∗(f)(m) = f(θ(m)).

We note as a fact that D preserves indecomposability of (finite-dimensional) modules. This can
be seen using the fact that HomA(M,N) ∼= HomAop(DN,DM) and can be upgraded to an algebra
isomorphism for the case when N = M ; then uses characterisation of indecomposable module by local
endomorphism ring.

Example 6.2. The left A-module AA yields a right A-module structure on D(A). More generally,
suppose we have a left ideal Ae of A for some element e ∈ A, then D(Ae) is a right ideal of A.

Remark 6.3. There is another natural duality, which we will not used, between modA and modAop

given by sending M to HomA(M,A). In general, this duality is different from the k-linear dual unless
A is a so-called symmetric algebra; interested reader can read lecture notes from last year.

7 Representations of quiver

Definition 7.1. A k-linear representation of Q is a datum ({Mi}i∈Q0 , {Mα}α∈Q1) where Mi is a
k-vector space for each i ∈ Q0 and Mα : Ms(α) →Mt(α) is K-linear map for each α ∈ Q1.

Such a representation is finite-dimensional if dimkMi <∞ for all i ∈ Q0.

Notation. For a representation M of Q, we take Mp := Mα1 · · ·Mα` for a path p = α1 · · ·α`.

It is easy to notice that every representation of Q is equivalent to a kQ-module, namely,

representation ({Mi}i∈Q0 , {Mα}α∈Q1)↔
kQ-module

∏
i∈Q0

Mi

s.t.
∑

p:path λpp acts as
∑

p λpMp.

Example 7.2 (Simple). For x ∈ Q0, denote by Sx (or S(x)) the representation given by putting a
1-dimensional space on x, zero on all other vertices, and zero on all arrows. This corresponds to a
1-dimensional kQ-module and so we call it the simple at x.
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Note: at this stage, it is not clear if these are all the simple kQ-modules (up to isomorphism) yet.

Example 7.3 (Projective). For x ∈ Q0, denote by Px (or P (x)) the representation given by
({My}y∈Q0 , {Mα}α∈Q1), where

My :=
⊕

p:path with
s(p)=x,
t(p)=y

kp, and (Mα : My →Mz) :=
∑
pα=q

(My � kp id−→ kq ↪→Mz).

This is called the projective at x. This corresponds to the right ideal exkQ of kQ.

Example 7.4 (Injective). Dual to the projective module construction, for x ∈ Q0, denote by Ix (or
I(x)) the representation given by ({My}y∈Q0 , {Mα}α∈Q1), where

My :=
⊕

p:path with
s(p)=y,
t(p)=x

kp, and (Mα : My →Mz) :=
∑
p=αq

(My � kp id−→ kq ↪→Mz).

This is called the injective at x. This corresponds to the dual of the left ideal generated by ex, i.e.
D(kQex).

Example 7.5. The representation of Q = ~An given by

Ui,j := 0→ · · · 0→ k id−→→ · · · id−→ k→ 0→ · · · → 0

with a copy of k on vertices i, i+1, . . . , j is the uniserial kQ-module corresponding to the column space
(under the isomorphism of kQ with the lower triangular matrix ring) with non-zero entries in the k-th
row for i ≤ k ≤ j.

Example 7.6. Let Q be the Jordan quiver with unique arrow α. Then a representation of Q is
nothing but an n-dimensional vector space equipped with a linear endomorphism, equivalently, an
n-by-n matrix.

Definition 7.7. A homomorphism f : M → N of (k-linear) quiver representations M = (Mi,Mα)i,α
and N = (Ni, Nα)i,α is a collection of linear maps fi : Mi → Ni that intertwines arrows’ actions, i.e.
we have a commutative diagram

Mi
fi //

Mα

��

Ni

Nα
��

Mj
fj
// Nj

for all arrows α : i→ j in Q.

A homomorphism f = (fi)i∈Q0 : M → N of quiver representations is injective, resp. surjective, resp.
an isomorphism, if every fi is injective, resp. surjective, resp. an isomorphism, for all i ∈ Q0.

Example 7.8. Let Q be the Jordan quiver. Recall that a representation of Q is equivalent to a
choice of n-by-n matrix Mα. By definition, the isomorphism class of such a representation is given
by the conjugacy classes of Mα. If we assume k is algebraically closed, then a representative of the
isomorphism class of Mα is given by the Jordan normal form of Mα. That is, Mα can be block-
diagonalise into Jordan blocks Jm1(λ1), . . . , Jml(λl), where Jm(λ) is the m-by-m Jordan block with
eigenvalue λ ∈ k.

Proposition 7.9. There is an isomorphism between the category of representations of Q and modkQ,
where (Mi,Mα)i,α corresponds to M =

∏
i∈Q0

Mi with kQ-action given by (linear combinations of com-
positions of) Mα’s, and isomorphism classes of Q-representations correspond to isomorphism classes
of kQ-modules.
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8 Idempotents

Recall that an idempotent of an algebra A is an element x with x2 = x.

The right A-modules of the form eA and D(Ae) for an idempotent e ∈ A are of central importance in
representation theory and in homological algebra.

Lemma 8.1. The the following hold for any idempotent e ∈ A.

(1) (Yoneda’s lemma) HomA(eA,M) ∼= Me as a k-vector space for all M ∈ Amod.

(2) There is an isomorphism of rings EndA(eA) ∼= eAe.

Proof For (1), check that HomA(eA,M) 3 f 7→ f(e) = f(1)e ∈ Me defines a k-linear map with
inverse me 7→ (ea 7→ mea). (2) follows from (1) by putting M = eA with straightforward check of
correspondence of multiplication on both sides.

Remark 8.2. Under the isomorphism A ∼= EndA(A), an idempotent e of A corresponds to the ‘project
to direct summand P = eA endomorphism’, i.e. A� P ↪→ A. This is compatible with Yoneda lemma
(think about this!) which says that there is a vector space isomorphism fAe ∼= HomA(eA, fA) for any
idempotents e, f .

Lemma 8.3. For idempotents e, f ∈ A, we have eA ∼= fA as right A-module if and only if f = ueu−1

for some unit u ∈ A×.

Proof ⇐: By Yoneda lemma, an isomorphism φ ∈ HomA(fA, eA) corresponds to an element in
x ∈ eAf ⊂ A; likewise an isomorphism ψ ∈ HomA((1−f)A, (1− e)A) corresponds to y ∈ (1− e)A(1−
f) ⊂ A. Let x′ ∈ fAe and y′ ∈ (1 − f)A(1 − e) be the elements corresponding to φ−1 and ψ−1

respectively. Since φ−1φ = ideA corresponds to e ∈ eAe, we have

x′x = f, xx′ = e, y′y = 1− f, yy′ = 1− e.

Take u := x + y and v := x′ + y′. Then we have vu = f + (1 − f) = 1 and uv = e + (1 − e) = 1.
Therefore, u, v are units such that uf = x = eu, i.e. e = ufu−1 as required.

⇒: The required isomorphism fA→ eA is given by fa 7→ eua.

Given an idempotent e = e2 ∈ A in an algebra A, then eA and (1 − e)A are both right ideal of A.
Since e(1 − e) = 0 = (1 − e)e, we have eA ∩ (1 − e)A = 0, which means that A ∼= eA ⊕ (1 − e)A
as right A-module. In particular, in the setting of the above lemma, we have that eA ∼= fA and
(1− e)A ∼= (1− f)A by Krull-Schmidt property.

Definition 8.4. Two idempotents e, f are orthogonal if ef = 0 = fe. An idempotent e is primitive
if e 6= f + f ′ for some orthogonal (pair of) idempotents f, f ′.

It follows from the definition of primitivity that

eA and D(Ae) are indecomposable A-modules for a primitive idempotent e.

Example 8.5. The trivial paths ex for x ∈ Q0 is (by design) a primitive idempotent of the path algebra
kQ (where Q is finite but not necessarily acyclic), and 1 =

∑
x∈Q0

ex is an orthgonal decomposition
of primitive idempotents. Hence, we have a decomposition

kQ ∼=
⊕
x∈Q0

exkQ =
⊕
x∈Q0

Px and D(kQ) ∼=
⊕
x∈Q0

D(kQex) ∼=
⊕
x∈Q0

Ix.
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9 Composition series, Jordan-Hölder Theorem

Definition 9.1. Let A be a k-algebra and M ∈ Amod. A composition series of M is a finite chain
of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂M` = M

such that Mi/Mi−1 is simple for all 1 ≤ i ≤ `. The number ` here is the length of the composition
series. The module Mi/Mi−1 for each 1 ≤ i ≤ ` are called the composition factors of the series.

Theorem 9.2 (Jordan-Hölder Theorem). Any two composition series have the same length and
their composition factors are the same up to permutations.

We omit the proof. The strategy is basically by induction on the length of series.

Remark 9.3. Jordan-Hölder theorem holds as long as a module, regardless of what kind of algebra,
has a (finite) composition series; this condition is actually equivalent to saying that it is noetherian
and artinian.

Remark 9.4. The Jordan-Hölder theorem may not hold if one relaxes the form of composition factors
from simple modules to something else. There are a few active research themes, including one related
to quasi-hereditary algebras, that are stemmed from this.

Lemma 9.5. Let M be a finite-dimensional right A-module. Then M has a composition series.

Proof Induction on dimkM , at each step choose a maximal submodule (i.e. a submodule whose
quotient is simple).

Example 9.6. Let A = k~An. Then the module Ui,j has a composition series

0 ⊂ Uj,j ⊂ Uj−1,j ⊂ · · · ⊂ Ui+1,j ⊂ Ui,j

with composition factors Sk = Uk,j/Uk+1,j for i ≤ k ≤ j. We note that this composition series is
actually unique - such kind of modules are called uniserial.

Lemma 9.7. If M ∈ modA and N ⊂M is a submodule, then there is a composition series (Mi)0≤i≤`
so that N = Mk for some 0 ≤ k ≤ `.

Proof N has a composition series, say, of length k, so we take that as the first k terms of the required
composition series of M . On the other hand, M/N also has a composition series, and since every
submodule of M/N is of the form L/N (for a submodule U of M/N , take L := {m ∈M | m+N ∈ U};
it is routine to check that this is an inverse operation as quotienting N on the submodules of M that
contains N), a composition series of M/N is of the form (Li/N)0≤i≤r. Now take Mk+i = Li.

Proposition 9.8. Suppose A is a k-algebra such that AA has a composition series. Then there are
only finitely many simple A-modules up to isomorphisms, and they all appear in the form A/I for
some A-submodule I of A.

Note that while this does not require A to be finite-dimensional, it requires AA to be of finite length
(equivalently, noetherian and artinian).

Proof The final clause of the claim is just restating Lemma 4.8: any simple S is given byA/AnnA(m)
for any non-zero m ∈ S. Now fix such an S and I := AnnA(m). Since A has a composition series,
I also have one by Lemma 9.7 so that the series ends with I ⊂ A. Since this is possible for any
simple S, it follows from Jordan-Hölder theorem that all simple modules other than S must appear
as composition factors of I.

Since composition series is a finite chain, there must be finitely many composition factors - hence, the
simple modules of A must be finite.
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10 Semisimplicity and Artin-Wedderburn theorem

In order to obtain all (isomorphism classes of) simple A-modules - or equivalently maximal right A
ideal (i.e. maximal submodules of AA) - for a finite-dimensional k-algebra A, we will use the following.

Definition 10.1. Let A be a k-algebra and M ∈ modA.

(1) The (Jacobson) radical rad(A) (sometimes also written as J(A)) of A is the intersection of all
maximal right ideals (i.e. maximal A-submodules) of A.

(2) A is semisimple if rad(A) = 0.

Example 10.2. For A = kQ of a finite quiver Q and x ∈ Q0. The projective Px at x contains a
submodule spanned by all paths starting from x with length at least 1. This is a maximal submodule
of Px since the cokernel of the natural embedding to Px is a one-dimensional module spanned by the
coset of ex – in particular, this simple module is isomorphic to Sx. Thus, we have rad(A) = kQ≥1 the
submodule of AA spanned by all paths of length at least 1.

Example 10.3. This example shows that we really need composition series on AA for things to be
well-behaved. Let A = k[x]. Each irreducible polynomial f generates a maximal ideal (f) ⊂ k[x] and
so rad(A) ⊂

⋂
f : irred.(f). Note that there are infinitely many irreducible polynomials in k[x].

We claim that rad(A) = 0. If, on the contrary, there is some non-zero g in this intersection of ideals,
then all irreducible polynomials are factors of g; this is a contradiction as g can only has finite degree,
i.e. finitely many irreducible factors.

Proposition 10.4. Suppose AA has a composition series. Then the following holds for the Jacobson
radical rad(A).

• rad(A) is the intersection of finitely many maximal right ideals.

• rad(A) is the intersection of all two-sided ideals AnnA(S) := {a ∈ A | ma = 0∀m ∈ S}, in other
words

rad(A) = {a ∈ A | Sa = 0 for all simple S}.

• rad(A) is a two-sided ideal of A.

• rad(A)` = 0 for ` at most the length of AA.

• (A/ rad(A))A/ rad(A) is a semisimple (as a module).

• AA is a semisimple (as a module) if, and only if, rad(A) = 0 (i.e. A semisimple as an algebra).

Proof omitted. We note that all of these claims do make use of the Jordan-Hölder theorem.

Example 10.5. (1) Direct product of two semisimple algebras is semisimple.

(2) A = Matn(D) with D a division k-algebra is a semisimple k-algebra. We have decomposition
AA ∼= V ⊕n into n copies of n-dimensional simple module

V = {(vi)1≤i≤n | vi ∈ D ∀i}.

(3) A := k[x]/(xn) is not semisimple for any n ≥ 2 as it has a non-trivial (unique) maximal ideal
rad(A) = (x).

Theorem 10.6 (Artin-Wedderburn theorem). Let A be a finite-dimensional k-algebra and let r be
the number of isoclasses of simple A-modules, say, with representatives S1, . . . , Sr. Let Di := EndA(Si)
be the division k-algebra given by endomorphism of the simple module Si. Then there is an isomorphism
of k-algebras

A/ rad(A) ∼= Matn1(D1)× · · · ×Matnr(Dr).
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As before, if we work over algebraically closed field k = k, then all the Di’s are just k.

Proof Let B := A/ rad(A). By definition of rad(A), the A-module A/ rad(A) is semisimple, and
any A-submodule M of A/ rad(A) satisfies M rad(A) = 0. Hence, M = M/M rad(A) is naturally a
B-module and EndB(M) ∼= EndA(M) (even as algebras!).

By Lemma 8.1, we have B ∼= EndB(B). Since B is semisimple, the BB is a semisimple B-module,
say, B ∼= S⊕n1

1 ⊕ · · · ⊕ S⊕nrr where Si are the (representatives of the) isomorphism classes of simple
B-modules. Hence, it follows from Schur’s lemma and its consequence (Lemma 4.10 and Lemma 4.13)
that

B ∼= EndB(B) ∼= Matn1(D1)× · · · ×Matnr(Dr),

where Di := EndB(Si) for all 1 ≤ i ≤ r. This completes the proof.

Corollary 10.7. For any finite-dimensional k-algebra A, let Sim(A) be the set of isomorphism-class
representatives of simple A-modules. Then there is a one-to-one correspondence

Sim(A) oo
1:1 // Sim(A/ rad(A))

S � // S := S/S rad(A)

(= S as underlying vector space)

resT T�oo

where resT is the restriction of T along A� A/ rad(A).

Definition 10.8. The radical of an A-module M is rad(M) := M rad(A). In general, take rad0(M) :=
M and denote by radk+1(M) := rad(radk(M)) = radk(M) rad(A) for all k ≥ 0.

Successively taking the radical yields a series:

0 ⊂ rad`(M) ⊂ · · · ⊂ rad(M) ⊂M

This is called the radical series. The quotient M/ rad(M) is called the top of M , and is denoted by
top(M).

Proposition 10.9. The following hold for M ∈ modA.

(1) rad(M) is the intersection of all maximal submodules of M .

(2) top(M) := M/ rad(M) is the maximal semisimple quotient of M .

(3) rad(M ⊕N) = rad(M)⊕ rad(N).

(4) (Nakayama’s Lemma, special case) For a submodule N ⊂M , (N + rad(M) = M)⇒ N = M .

Proof omitted; this follows the same kind of arguments as in the case for rad(A).

There is a construction dual to rad(M).

Definition 10.10. The socle of an A-module M is soc(M), which is defined as the maximal semisimple
submodule of M . More generally, take soc0(M) = 0 and for k ≥ 0, let sock+1(M) to be the submodule
of M generated by the lift of soc(M/ sock(M)) ⊂M/ sock(M). This yields a series

0 ⊂ soc(M) ⊂ soc2(M) ⊂ · · · ⊂ soc`(M) = M

called the socle series of M .

Example 10.11. Consider a path algebra kQ of a finite acyclic (for simplicity) quiver Q, and x ∈ Q0.
The indecomposable injective Ix = D(kQex) has a simple socle isomorphic to Sx. Essentially this can
be seen by a dual argument in showing top(Px) ∼= Sx.

15



Lemma 10.12. For M ∈ modA, the socle series and radical series has the same length, and this
length is called the Loewy length of M .

Note that the semisimple subquotients in (between the layers of) the socle series and the radical series
of a module may not coincide.

Example 10.13. Let Q be the quiver 1
α←− 2

β−→ 3
γ−→ 4 and consider the projective P2 which has the

form

k 1←− k 1−→ k 1−→ k

Then we have radical series

0 ⊂ S4 = kβγ
S1⊕S3⊂ rad(P2) = kα+ kβ + kβγ

S2⊂ P2

and socle series

0 ⊂ S2 ⊕ S4 = kα+ kβγ
S3⊂ rad(P2) ⊂ P2.
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11 Bounded path algebra

For general quiver, we loses finite-dimensionality, and so many nice things we explained do not hold
any more. To retain finite-dimensionality, we need to consider nice quotients of path algebras.

Definition 11.1. An ideal I C kQ is admissible if (kQ1)k ⊂ I ⊂ (kQ1)2 for some k ≥ 2, i.e. I
is generated by linear combinations of paths of finite length at least 2. The pair (Q, I) is sometimes
called bounded quiver. A bounded path algebra or quiver algebra (with relations) is an algebra of the
form kQ/I for some quiver Q and admissible ideal I.

Remark 11.2. Admissiblity ensures there is no redundant arrows (which appears if there is a relation
like, for example, α− βγ ∈ I for some α 6= β, γ ∈ Q1) and there is enough vertices (trivial paths may
not be primitive if there is a loop x at a vertex with relation x2 − x ∈ I).

Lemma 11.3. A bounded path algebra is finite-dimensional.

Proof There exists a surjective algebra homomorphism kQ/(kQ1)k � kQ/I; the former is finite-
dimensional.

Example 11.4. Let Q be the Jordan quiver with unique arrow α. Let I be the ideal of kQ generated
by αk for some k ≥ 2. Then I is an admissible ideal and kQ/I ∼= k[x]/(xk) is a truncated polynomial
ring.

Definition 11.5. A representation M of a bounded quiver (Q, I) is a representation M = (Mi,Mα)i,α
of Q such that Ma = 0 for all a ∈ I; here Ma :=

∑
p λpMp for a =

∑
p λpp written as a linear

combinations of paths p.

A homomorphism f : M → N of representations of (Q, I) is a collection of linear maps fi : Mi → Ni

that intertwines arrows’ action.

As before, representations are really just synonyms of modules.

Lemma 11.6. A representation of a bounded quiver (Q, I) is equivalent to a kQ/I-module, and
homomorphisms between representations are equivalent to those between kQ/I-modules.

We have seen that it is easy to write down the indecomposable decomposition of the free kQ-module
kQkQ, we would like such nice thing to carry over to bounded path algebras.

Theorem 11.7. (Idempotent lifting) If I is a nilpotent ideal of A (i.e. In = 0 for some n ≥ 1) and
e = e2 ∈ A/I, then there is a lift e = e2 ∈ A of e, i.e. e = e+ I.

Proof omitted.

Corollary 11.8. Let I be an nilpotent ideal in A. Suppose that

1A/I = f1 + · · ·+ fn

for fi ∈ A/I are primitive orthogonal idempotents. Then we have

1A = e1 + · · · en

where each ei ∈ A is a primitive orthogonal idempotent that lifts fi.

Notation. As in the case of path algebra, denote by Sx or S(x) the simple kQ/I-module given by
placing a one-dimensional vector space at vertex x ∈ Q0 and zero everywhere else.

Similarly, denote by Px or P (x) the indecomposable kQ/I-module exkQ/I. Likewise, by Ix or I(x)
the indecomposable D((kQ/I)ex).
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Proposition 11.9. There is a decomposition of A-modules

AA =
⊕
x∈Q0

Px, and (DA)A =
⊕
x∈Q0

Ix.

Moreover, {Sx ∼= top(Px) ∼= soc(Ix) | x ∈ Q0} form the complete set of isoclasses representatives of
simple A-modules.

Proof Each arrow α ∈ Q1 generates a maximal right ideal of A with quotient Sx for x = s(α). So
we have A/ rad(A) ∼= kQ0 =

∏
x∈Q0

k. As primitive orthogonal decomposition of the identity element
of A lifts to that of the identity element of A/ rad(A) by Corollary 11.8, we have ex primitive, and so
Px and Ix are indecomposable.

The simple A-modules (up to isomorphisms) correspond to those over the semisimple quotient algebra
A/ rad(A) by Corollary 10.7. Hence, there are precisely |Q0| simple modules (up to isomorphism),
given by the simple top of Px, which is also isomorphic to the simple socle of Ix.

We give a brief justification of why quiver representations provide a good way to construct lots of
algebras.

Theorem 11.10. Suppose k is algebraically closed. Then every finite-dimensional k-algebra A is
Morita equivalent to a bounded path algebra kQ/I. More precisely, kQ/I is given by EndA(

⊕
e eA)

where e varies over the set of representative of equivalence classes of primitive idempotents of A.

We do not explain here the precise meaning of Morita equivalent; it roughly translates to saying
that understanding A-modules and homomorphisms between them is equivalently (but not necessarily
‘equal to’) to understanding modules and homomorphisms between a Morita equivalent bounded path
algebra.

Example 11.11. Let A = Matn(k) be a matrix ring. Then the elementary matrix e := E1,1 is a
primitive idempotent and eA ∼= Ej,jA for all 1 ≤ j ≤ n. So A is Morita equivalent to k ∼= kQ ∼=
EndA(eA) where Q is a one-vertex-no-arrow quiver.

Primitive idempotent decomposition, say, 1 =
∑n

i=1 ei, allows us to write an algebra A in matrix form
(eiAej)1≤i,j≤n, where the ‘row spaces’ form the indecomposable direct summands eiA and the dual of
the ‘column space’ form the indecomposable direct summands D(Aei). It could be a helpful mental
exercise to think about the meaning of eAe ∼= EndA(eA) from Yoneda lemma - this maybe a useful
idea to keep in mind when one tries to understand the above theorem.
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Module diagram

It is convenient to display the structure of a module via a more combinatorial form (a diagram) – if
possible. 1 This is (as of today technology) a better way to display module structure – at least compare
to composition series, or lattice diagram of the submodule lattice, or even, quiver representations, in
some cases.

Definition 11.12. Let M ∈ modA be a finite-dimensional A-module for A = kQ/I a bounded path
algebra. The module diagram is a (directed) graph with vertices labelled by composition factors of M
(in particular, there are dimkMex many vertices labelled by x), and arrows labelled by those in Q1 in
such a way that x

a−→ y if for an arrow a ∈ Q that sends (the lift of) an element in the composition
factor at x to (the lift of) an element in the composition factor at y.

Module diagram drawn in this way is not invariant under isomorphism. A connected diagram may
not even implies indecomposability in general (c.f. Homework 2). Nevertheless, when the algebras or
modules are well-behaved, then these diagram provide a very efficient combinatorial way to perform
a lot of (linear algebra) calculation.

It is customary to draw the the module diagram flowing from top to bottom; in particular, the top
(semisimple quotient) of M is placed on the top of the diagram and the socle at the bottom. We may
omit a connecting line if there is no ambiguity.

Example 11.13. The indecomposable Ui,j of k~An is just a column of numbers labelled from i down

to j. For a concrete example, the module diagram of U4,6 is just
4
5
6

.

Example 11.14. Consider the following bounded quiver:

Q : 1
α1
&&2

α2
&&

β1

ff 3
β2

ff , I = (α1α2, β1β2, β1α1 − α2β2).

Then we have

P1 =
ke1
kα1
kα1β1

=
1
2
1

, P2 =
ke1

kα2⊕kβ1
kα2β2

=
2

1 3
2

, P3 =
ke3
kβ2
kβ2α2

=
3
2
3

Let us consider the two-sided ideal Ae1A. This is spanned by all paths (‘up to I’) that passes through
the vertex 1. As a right module, we can find its manifestation in the module diagram by picking
everything below any appearance of the label 1 – in this case, it is all of P1 and the 1

2 part submodule
of P2. In particular, the quotient algebra (A/Ae1A)A/Ae1A has module diagram:

P
A/Ae1A
2 = e2A/e2Ae1A = P2/P2e1A = 2

3 , P
A/Ae1A
3 = P3/P3e1A = PA3 =

3
2
3

The bounded quiver presentation of A/Ae1A is given by

Q : 2
α
&&3

β

ff , I = (αβ).

On the other hand, for eAe with e = e2 + e3, the module diagram is given by removing all composition
factors that are not S2, S3, i.e.

e2Ae =
2
3
2

, e3Ae =
3
2
3

and the bounded quiver presentation of eAe is given by

Q : 2
α
&&3

β

ff , I = (αβα, βαβ).

1There is no widely agreed name to these diagrams; for convenience, we just call them ‘module diagram’ in this notes.
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12 Snippets of category theory

Some language in category will be convenient – albeit not absolutely necessary.

A category is a collection of objects along with their morphisms f : X → Y , including all identity
morphisms idX : X → X, so that

• morphisms f : X → Y , g : Y → Z can always be composed gf : X → Z to get a new morphism,

• in such a way that is associative, i.e. h(gf) = (hg)f for all h, g, f ,

• and has left and right unit, i.e. f idX = f and idY f = f .

Example 12.1. We only really use the category modA of (finitely generated) A-modules in this notes.
Some results still hold for the category ModA of all A-modules, but let us keep it simple.

A functor F : modA→ modB consists of

• an assignment of objects M 7→ F (M) ∈ modB for any M ∈ modA, and

• an assignment of morphisms F (f) ∈ HomB(F (X), F (Y )) for all f ∈ HomA(X,Y ), such that

• F (idX) = idF (X), and

• either F (gf) = F (g)F (f) or F (gf) = F (f)F (g).

The case when order of morphism composition does not change is called a covariant functor, and the
other is called a contravariant functor. Usually, whenever we say a functor we mean a covariant one.

Functor allows us to change from the representation theory of one algebra to another. The key point
is that it preserves identity and compositions.

Example 12.2. The identity functor Id : modA → modA is the functor given by mapping every
module and homomorphism to itself.

Example 12.3. The (k-linear) duality D = Homk(−, k) : modA → modAop is a contravariant
functor.

To compare two functors (or compare how a pair of functors is close/far away from the identity
functor), one uses natural transformations. More precisely, a natural transformation η : F ⇒ G of
functors F,G : modA → modB is a collection of morphisms ηX : F (X) → G(X) such that there is
the following commutative diagram

F (X)
ηX //

F (f)

��

G(X)

G(f)

��
F (Y )

ηY // G(Y )

If we say that a map ηX : F (X) → G(X) is natural in X, then we mean that {ηX}X∈modA defines a
natural transformation.

A natural isomorphism is a natural transformation η such that ηX is an isomorphism for all X; in
such a case, we may simply write F ∼= G when η is clear from context.
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13 Bimodule, tensor and Hom

13.1 Bimodule

Definition 13.1. Let A,B be two k-algebras. An A-B-bimodule is a k-vector space M that has the
structure of a left A-module and also the structure of a right B-module, such that (am)b = a(mb) for
all a ∈ A, b ∈ B,m ∈ M . In such a case, we may write M ∈ AmodB or AMB to specify M is an
A-B-bimodule.

For simplicity, we assume all bimodules are k-central, i.e. λm = mλ for all λ ∈ k. We will omit the
adjective k-central from now on.

Example 13.2. For any algebra A, both A and D(A) are naturally an A-A-bimodule. Note that the
right/left module structure on D(A) is induced by the left/right module structure on A. (The direction
of action has swapped!)

Example 13.3. HomA(X,Y ) is naturally a EndA(Y )-EndA(X)-bimodule with action given by com-
position of homomorphisms.

13.2 Tensor product

Definition 13.4. Let V,W be finite-dimensional k-vector space with bases, say, B, C respectively.
Then the tensor product V ⊗kW (or simplifies to V ⊗W if context is clear) is the finite-dimensional
k-vector space with bases given by

{v ⊗ w | v ∈ B, w ∈ C}.

In particular, note that dimk V ⊗W = (dimk V )× (dimkW ).

Proposition 13.5. Let A,B be k-algebras. Then A ⊗k B is also a k-algebra with multiplication
given by extending (a ⊗ b)(a′ ⊗ b′) 7→ aa′ ⊗ bb′ linearly. For M ∈ modA and N ∈ modB, we have
M ⊗k N ∈ modA⊗k B.

Proof Routine checking.

Example 13.6. Consider A = (ai,j)1≤i,j≤m ∈ Matm(k) and B ∈ Matn(k) and defines (what is
sometimes called Kronecker product of matrices)

A⊗B :=


a1,1B a1,2B · · · a1,mB

a2,1B
. . . a2,mB

...
. . .

...
am,1B am,2B · · · am,mB

 .

Then we have an isomorphism of algebras

Matm(k)⊗k Matn(k)→ Matmn(k), (A,B) 7→ A⊗B.

Lemma 13.7. An idempotent e ∈ A ⊗k B is primitive if and only if e = el ⊗ er for some primitive
idempotents el ∈ A and er ∈ B. In particular, we have Sim(A ⊗k B) = {S ⊗ T | S ∈ Sim(A), T ∈
Sim(B)}.

Note that not all A⊗k B-module is of the form M ⊗N .
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Example 13.8. Let A = k[x]/(x2) and A′ := k[y]/(y2). Then B := A ⊗k A′ = k[x, y]/(x2, y2).
Then we have an indecomposable 2-dimensional B-module V = ku + kv (top S = B/ rad(B) and
socle S) where both x, y acts by u 7→ v. This cannot be of the form M ⊗ N for some M ∈ modA
and N ∈ modA′. Indeed, as both x, y acts non-trivially, if V = M ⊗ N then both M,N must have
dimension at least 2, and so the tensor product has dimension at least 4; but dimk V = 2.

Proposition 13.9. An A ⊗k Bop-module is the same as a (k-central) B-A-bimodule. Moreover,
homomorphisms of A⊗Bop-modules correspond to (k-linear) homomorphisms of B-A-bimodule.

Definition 13.10. Let X ∈ modA be a right A-module and Y ∈ modAop be a left A-module. Then
define X ⊗A Y to be the vector space X ⊗k Y/U where U is the subspace consisting of xa⊗ y− x⊗ ay
for all x ∈ X, y ∈ Y, a ∈ A.

In the above, if AYB is, in addition, an A-B-bimodule, then X ⊗A Y has a natural right B-module
structure: (x⊗ y)b := x⊗ (yb). In fact, as any left A-module is also a A-k-bimodule, we can X ⊗A Y
being a k-vector space as a special case of this observation.

Suppose we have a homomorphism f : M → N of right A-modules. Then for an A-B-bimodule AYB
we get a homomorphism of

M ⊗A YB
f⊗AY // N ⊗A YB

m⊗ y � // f(m)⊗ y

Note that (gf)⊗A Y = (g ⊗A Y )(f ⊗A Y ), that is, −⊗A Y is a (covariant) functor. It is also k-linear
additive in the sense that (λf + µg)⊗A Y = λ(f ⊗A Y ) + µ(g ⊗A Y ) for all homomorphisms f, g and
scalar λ, µ ∈ k.

Likewise, if X is a bimodule, then BX ⊗A Y has a left module structure; mutatis mutantis.

Example 13.11. Consider the bounded quiver

Q : 1
α
&&2

β

ff , I = (βα).

We look at the (A⊗Aop-module) structure of Ae⊗ eA,AeA,Ae⊗eAe eA for e = e1 in the following.

Ae⊗ eA =
11

21 12
11 22 11

12 21
11

=

e1 ⊗ e1

αβop

e1 ⊗ α
ββop

e1 ⊗ αβ
βop

β ⊗ e1

ααop

β ⊗ α
βαop

β ⊗ αβ
αop

αβ ⊗ e1

α

αβ ⊗ α
β

αβ ⊗ αβ

As a right A-module, this is dimkAe = 3 copies of eA = P1 =
1
2
1

.

AeA =
11

21 12
11

=

e1

αβop

α

β

β

αop

αβ
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As right A-module, we have AeA = eA⊕ kβ ∼= P1 ⊕ S2.

For Ae ⊗eAe eA, first note that eAe = k{e = e1, αβ}, and so αβ ⊗ e1 = e1 ⊗ αβ. In particular, so
basis elements in Ae⊗ eA vanishes, for example, αβ ⊗ α = e1 ⊗ αβα = 0 as βα = 0 in A.

Ae⊗eAe eA = 11

21 12

22 11

= e⊗ e
βop

α

β ⊗ e
αop

α

e⊗ α

β

βop

β ⊗ α e⊗ αβ

The right A-module structure of Ae⊗eAe eA is isomorphic to P1 ⊕ P1/ soc(P1).

13.3 Hom

Suppose now that we have BXA aB-A-bimodule andM a rightA-module. Then the space HomA(X,Y )
has a natural right B-module structure:

(f : X → Y ) · b := (x 7→ f(bx))

Indeed, we have
((f · b) · b′)(x) = (f · b)(b′x) = f(bb′x) = (f · (bb′))(x),

and other axioms are even easier to verify. HomA(BXA,−) is also a k-linear additive covariant functor:
for f : M → N a homomorphism of A-modules, we have

HomA(X,M)
f◦− // HomA(X,N)

α � // f ◦ α

Similarly, in the same setting, HomA(Y,BXA) also has a left B-module structure:

(b′ · (b · f))(x) = b′((b · f)(x)) = b′(bf(x)) = (b′b)f(x) = ((b′b) · f)(x).

However, note that HomA(f,X) = − ◦ f : HomA(N,X) → HomA(M,X) for any f : M → N , i.e.
HomA(−, X) is a (k-linear additive) contravariantly functor, meaning that it reverse the direction of
homomorphisms.

Lemma 13.12. Hom functor commutes with finite direct sum in both variables, i.e. there is a com-
mutative diagram:

HomA(
⊕`

j=1 Lj , N)
−◦θ //

∼=
��

HomA(
⊕m

i=1Mi, N)

∼=
��⊕`

j=1 HomA(Lj , N)
(−◦θιj)i,j //

⊕m
i=1 HomA(Mi, N)

where ιj : Lj ↪→
⊕

k Lk and πi :
⊕

kMk → Mi are the canonical maps, and there is also a similar

commutative diagram arising from HomA(M,
⊕`

i=1 Li)
∼=
⊕`

i=1 HomA(M,Li).

Remark 13.13. In proper functorial language, this is saying that there are natural isomorphisms

HomA(
⊕̀
j=1

Lj ,−) ∼=
⊕̀
j=1

HomA(Lj ,−) and HomA(−,
⊕̀
i=1

Li) ∼=
⊕̀
i=1

(−, Li).
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Lemma 13.14. For any A-module M , we have (natural) A-module isomorphisms

M ⊗A A ∼= M, and HomA(A,M) ∼= M

given by m⊗1 7→ m and f 7→ f(1). Moreover, −⊗AA and HomA(A,−) are both naturally isomorphic
to the identity functor.

Proof First one follows from the construction that ma⊗ 1 = m⊗ a. The second one is just special
case of Yoneda lemma.

13.4 Tensor-Hom adjunction

Suppose AMB is a A-B-bimodule, then we have two functors:

modA
−⊗AM ,,

modB
HomB(MB ,−)

ll .

These are not inverse to each other; but they form a so-called adjoint pair, which is equivalent to
saying that there is the following natural isomorphisms.

Theorem 13.15 (Tensor-Hom adjunction). Let X ∈ modA, Y ∈ modB, AMB ∈ AmodB. Then
there is a canonical isomorphism of k-vector spaces

θX,M,Y : HomB(X ⊗AM,Y )
∼= // HomA(X,HomB(M,Y ))

f � // (x 7→ (m 7→ f(x⊗m)))

(x⊗m 7→ (g(x))(m)) g�oo

that is natural in each of X,M, Y .

Proof Check that the maps written are (k-linear and) mutual inverse of each other.

In computer science, the map θX,M,Y is also called “currying”.

As innocence as it looks, this isomorphism is fundamental in (homological algebra and) representation
theory.

Example 13.16 (Adjoint triple (RHS)). eA is naturally an eAe-A-bimodule. Hence, we have an
adjoint pair (−⊗eAe eA,HomA(eA,−)).

On the other hand, Ae is naturally an A-eAe-bimodule, and so we have another adjoint pair (− ⊗A
Ae,HomeAe(Ae,−)). Note that we have HomA(eA,−) ∼= −⊗A Ae by Yoneda lemma.

Example 13.17 (Adjoint triple (LHS)). A/I is naturally an A-A/I-bimodule for any two-sided
ideal I of A, and so we have an adjoint pair (−⊗A A/I,HomA/I(A/I,−)).

A/I is also an A/I-A-bimodule, and so there is another adjoint pair (− ⊗A/I A/I,HomA(A/I,−)).
Note that both HomA/I(A/I,−) and ⊗A/IA/I sends an A/I-module to itself (up to isomorphism) and
acts identically on morphisms, i.e. HomA/I(A/I,−) ∼= Id ∼= −⊗A/I A/I.
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14 Exactness

Definition 14.1. Consider a sequence2 M• = (Mi, di)i∈Z of modules and homomorphisms of modules

M• : · · · di−2−−−→Mi−1
di−1−−−→Mi

di−→Mi+1
di+1−−−→ · · · .

We say that the sequence M• is

• a complex if di+1di = 0 for all i ∈ Z. In such a case, we have Im(di) ⊂ Ker(di+1) for all i ∈ Z
and the i-th cohomology of M• is

H i(M•) := Ker(di)/ Im(di−1).

• exact at Mk for some k ∈ Z if Im(dk−1) = Ker(dk). Note that this implies dk ◦ dk−1 = 0.

• exact if it is so at every term.

• short exact (often abbreviated as s.e.s. or ses) if it is a 5-term exact sequence that starts and
ends at the trivial module, i.e., of the form

0→ L
f−→M

g−→ N → 0 (14.1)

such that f is injective, g is surjective, and Ker(g) = Im(f). In this case, M is also called an
extension of N by L.

Definition 14.2. A (covariant) functor F : modA→ modB is

• left exact if it maps short exact sequence (such as (14.1)) to an exact sequence

0→ F (L)
F (f)−−−→ F (M)

F (g)−−−→ F (N).

In other words, it preserves kernel.

• right exact if it maps short exact sequence (such as (14.1)) to an exact sequence

F (L)
F (f)−−−→ F (M)

F (g)−−−→ F (N)→ 0.

In other words, it preserves cokernel.

• exact if it is both left exact and right exact, i.e. maps ses to ses.

We define left/right exactness for contravariant functor analogously. In particular, left exact con-
travariant fucntor turns cokernel into kernel.

Lemma 14.3. Let BXA be an A-B-bimodule. Then the following hold.

(1) HomA(X,−) maps an exact sequence 0→ L
f−→M

g−→ N to an exact sequence

0→ HomA(X,L)
f◦−−−→ HomA(X,M)

g◦−−−→ HomA(X,N).

In particular, HomA(X,−) is left exact.

(2) HomA(−, X) maps an exact sequence L
f−→M

g−→ N → 0 to an exact sequence

0→ HomA(N,X)
−◦g−−→ HomA(M,X)

−◦f−−→ HomA(L,X).

In particular, the contravariant functor HomA(−, X) is left exact.

2Superscript/subscript indexing formalism only matters to topologist; I will be liberal in these notations.
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Proof We show (1) and leave (2) for the reader.

Exactness at HomA(X,L): we need f ◦ − to be injective. Indeed, if f ◦ θ = 0 for some θ : X → L,
then f(θ(x)) for all x ∈ X. This means that θ(x) ∈ Ker(f) = 0, and so θ = 0.

Im(f ◦ −) ⊂ Ker(g ◦ −): Suppose that θ : X → M is given by f ◦ φ for some φ : X → L. Then
gφ(x) = g(fφ(x)) = (gf)φ(x) = 0, which means that θ ∈ Ker(g ◦ −).

Ker(g ◦ −) ⊂ Im(f ◦ −): Suppose that gθ = 0 for some θ : X → M . Then for every x ∈ X, we have
θ(x) ∈ Ker(g) = Im(f), and so we can write θ(x) = f(φ(x)) for some φ(x) ∈ L. Since f is injective,
φ(x) ∈ L is uniquely determined, and so we have a well-defined function φ : X → L. We check that
φ ∈ HomA(X,L):

• f(φ(x+ x′)) = θ(x+ x′) = θ(x) + θ(x′) = f(φ(x)) + f(φ(x′)) = f(φ(x) + φ′(x)). Hence, f being
injective implies that φ(x+ x′) = φ(x) + φ(x′).

• Suppose that λ ∈ k. Then f(φ(λx)) = θ(λx) = λθ(x) = λf(φ(x)) = f(λφ(x)). Hence, f being
injective implies that λφ(x) = φ(λx).

Now we have θ = fφ as A-module homomorphism, and so θ ∈ Im(f ◦ −).

A similar lemma for tensor product exists, and can be proved by direct verification as in the Hom
functor case. Instead, we use another trick involving tensor-Hom adjunction, but first we need one
more tool.

Lemma 14.4 (Yoneda embedding reflects exactness). Consider a sequence L
f−→ M

g−→ N in
modA. If the sequence

HomA(X,L)
f◦−−−→ HomA(X,M)

g◦−−−→ Hom(X,N)

is exact for all X ∈ modA, then L
f−→M

g−→ N is also exact. Similarly, if

HomA(N,X)
−◦g−−→ HomA(M,X)

−◦f−−→ Hom(N,X)

is exact for all X ∈ modA, then so is the original sequence.

Proof We show the first one.

Im(f) ⊂ Ker(g): Take X = L, then we have gf = (g ◦ −)(f ◦ −)(idL) = 0.

Ker(g) ⊂ Im(f): Consider X = Ker(g) and inclusion ι : Ker(g) ↪→ M . Then (g ◦ −)(ι) = gι = 0, so
exactness implies that ι = fφ for some φ ∈ HomA(Ker(g),M). Hence, Ker(g) = Im(ι) ⊂ Im(f).

Lemma 14.5. −⊗A X maps an exact sequence L
f−→M

g−→ N → 0 to an exact sequence

L⊗A X
f⊗AX−−−−→M ⊗A X

g⊗AX−−−−→ N ⊗A X → 0.

In particular, −⊗A X is right exact.

Proof We apply HomB(−, Y ) to the sequence (after tensoring X). By the naturality of the adjoint
isomorphism, we have a commutative diagram:

0 //

�

HomB(N ⊗A X,Y )
−◦g⊗AX //

∼=
��

�

HomA(M ⊗A X,Y )
−◦f⊗AX //

∼=
��

�

HomA(L⊗A X,Y )

∼=
��

0 // HomA(N,HomB(X,Y ))
−◦g // HomA(M,HomB(X,Y ))

−◦f // HomA(L,HomB(X,Y ))

The second row is exact since it is given by applying the left exact functor HomA(−, Z) for Z =
HomB(X,Y ). Hence, (by careful diagram chasing) the first row is also exact. Since Yoneda embedding
reflects exactness, we get the claimed exactness.
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15 Projective and injective

Definition 15.1. An A-module P is projective if for any given surjective homomorphism f : M �M ′

and any homomorphism p : P →M , we have p factors through f , i.e. ∃q : P →M ′ s.t. fq = p there
is the following commutative diagram

P
∃q

}}
∀p
��

M ′
f // //M.

In other words, f ◦− = HomA(P, f) : HomA(P,M ′)→ HomA(P,M) is surjective, i.e. HomA(P,−) is
exact. Denote by projA the category of finitely generated projective A-modules.

Dually, an A-module I is injective if for any given injective homomorphism f : M ′ ↪→ M and any
homomorphism i : M → I, i factors through f . This is equivalent to saying that HomA(f, I) :
HomA(M, I) → HomA(M ′, I) is surjective, i.e. HomA(−, I) is exact. Denote by injA the category of
finitely generated injective A-modules.

Example 15.2. Take P = A. Then we know that HomA(A, Y ) ∼= Y via α 7→ α(1) for any Y ∈ modA.
Hence, for any surjective f : M ′ → M and any p : A → M , to find q we only need to show that
f(q(1)) = p(1), but

p(1) = f(∃x) = f(∃q(1)).

That is, the free A-module AA is projective. Note that this does not require finite-dimensionality of A.
Consequently, any free A-module (of any rank) is also projective.

Dually, using HomA(X,DA) ∼= HomAop(A,DX) and the same argument, we get that DA is injective.
Note that this DOES require the finite-dimensionality of A since we need to the isomorphism between
the Hom-space under duality.

Lemma 15.3. The following are equivalent for a ses 0→ L
f−→M

g−→ N → 0.

(1) There is some h : N → N such that gh = idN .

(2) There is some e : M → L such that ef = idM .

(3) There is a commutative diagram

0 // L
f //M

g //

∼=u
��

N // 0

0 // L
(1,0)T

// L⊕N
(0,1)

// N // 0

In the case when any of these conditions is satisfied, we say that the ses splits.

Proof See ‘Splitting lemma’ on Wikipedia.

Remark 15.4. Note that (3) is strictly stronger than just having M ∼= L ⊕ N for general modules.
However, in our setting3, having M ∼= L ⊕ N is enough for splitness. Indeed, applying HomA(−, L)
yields an exact sequence

0→ HomA(N,L)→ HomA(L⊕N,N)→ HomA(N,N)

of left EndA(N)-modules. Now the original ses splits is equivalent to having hf = idN , and so
is equivalent to the last map of this induced sequence to be surjective. Since everything is finite-
dimensional in our setting, and dimk HomA(L ⊕ N,N) = dimk HomA(L,N) + dimk HomA(N,N),
exactness at HomA(L⊕N,N) means that the last map must be surjective.

3also OK for L,N finitely generated over a Noetherian A, see https://mathoverflow.net/questions/167701/
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The following justifies why we called eA projective before.

Lemma 15.5. The following are equivalent of a finitely genearted A-module P .

(1) P is projective, i.e. HomA(P,−) is an exact functor.

(2) Any ses 0→ L
f−→M

g−→ P → 0 splits.

(3) P is a direct summand of a free module of finite rank.

Proof (1) ⇒ (2): We have a surjective map HomA(P,M)
f◦−−−→ HomA(P, P ), and so idP = fq for

some q : P →M .

(2) ⇒ (3): Since P is finitely generated, there is a surjective A-module homomorphism π : A⊕n → P
for some n. So we have a short exact sequence

0→ Kerπ → A⊕n
π−→ P → 0.

Hence, it follows by (2) and Lemma 15.3 that P is a direct summand of A⊕n.

(3) ⇒ (1): We have learnt that indecomposable direct summands of AA is given by the right ideal
eA of some primitive idempotent e = e2 ∈ A. Hence, by the assumption and Krull-Schmidt property
P =

⊕n
i=1 eiA with ei primitive idempotents. Now we have a natural projection π : A⊕n → P given

by sending the i-th identity 1A to ei, and a natural inclusion ι : P → A⊕n given by ι|eiA = (eiA ↪→ A).
Note that πι = idP .

Consider a surjective A-module homomorphism f : M → N and take any A-module homomorphism
p : P → N . This yields pπ : A⊕n → N , which can be lifted to some q′ : A⊕n →M as A⊕n is projective.
Now we have

(fq′)ι = (pπ)ι = p,

which means that taking q = q′ι give the required lift of p.

Remark 15.6. This result do not require finiteness anywhere, nor Krull-Schmidt; but this special case
yields an easier proof. For details of proof in full generality, see Proposition 3.3 and Theorem 3.5 in
Rotman’s book.

There is a dual result under some restriction.

Lemma 15.7. Suppose A is finite dimensional and I is a finitely generated A-module. Then the
following are equivalent.

(1) I is injective, i.e. HomA(−, I) is an exact functor.

(2) An ses 0→ I →M → N → 0 splits.

(3) I is a direct summand of finite direct sum of DA.

Definition 15.8. For M ∈ modA and simple module S ∈ modA, denote by [M : S] the multiplicity
of S as a composition factor of M .

Lemma 15.9. An endomorphism θ of a simple module S lifts to an endomorphism θ̂ on its projective
cover P so that θp = pθ̂ for any non-trivial projection p : P → S.

Proof By Schur’s lemma, a non-zero endomorphism θ of S has an inverse φ. As φ is an isomorphism,
it is also surjective, and so the projection p lifts to q : P → S so that φq = p. Now we can lift q to θ̂
so that pθ̂ = q. Hence, we have a commutative diagram

P
p // //

θ̂
��

q

��

S

θ=φ−1

��
P

p // // S
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as required.

Lemma 15.10. Let Px be the (indecomposable) projective cover of simple module Sx whose endomor-
phism ring is Dx := EndA(Sx). Then we have

dimDx HomA(Px,M) = [M : Sx] = dimDx HomA(M, Ix).

Proof We show by induction on the length of M .

Since Px has a simple top Sx, we have HomA(Px, Sy) ∼= HomA(Sx, Sy) ∼= δx,yDx. Hence, the claim
holds for M = Sy a simple module.

In general, we have suppose Sy is a direct summand of the top of M , then we have a short exact
sequence 0 → N → M → Sy → 0 where the length of N is strictly less than that of M . Applying
HomA(Px,−) and using exactness of the Hom-functor we have a short exact sequence

0→ HomA(Px, N)→ HomA(Px,M)→ HomA(Px, Sy)→ 0.

Note that this is an exact sequence of (right) EndA(Px)-modules; hence, also an exact sequence of
right Dx = EndA(S)-module where θ ∈ Dx acts by the lift θ̂ ∈ EndA(Px) shown in Lemma 15.9.
Now, we have dimDx HomA(Px,M) = dimDx HomA(Px, Sy) + dimDx HomA(Px, N), and the proof is
completed by applying induction hypothesis.

The proof for the dimDx HomA(M, Ix) side is dual.
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16 Resolution and Ext-group

By definition, any finitely generated module M comes a canonical surjective A-module homomorphism
A⊕n �M . One can expect the kernel of this map is ‘too large’, meaning that many direct summands
of the domain appear in the kernel. For more efficient calculation, we often use the most optimal
direct summand of A⊕n.

Definition 16.1. A projective cover of an A-module M is a projective A-module P along with a
surjective A-module homomorphism p : PM → M such that the restriction p|Q for every proper
submodule Q ⊂ PM is non-surjective.

Dually, an injective hull of M is an injective module I along with an injective A-module homomorphism
i : M → IM such that any proper quotient q : IM � J yields a non-injective map qi.

Lemma 16.2. Projective cover and injective hull of M ∈ modA exist and are unique up to isomor-
phism.

Proof We show the case for projective cover; the injective hull case is dual.

Suppose top(M) = M/ rad(M) ∼= S⊕m1
1 ⊕ · · ·⊕S⊕mnn . By consequence of Artin-Wedderburn, we have

Si = Pi/ radPi for each i. Take PM = P⊕m1
1 ⊕ · · · ⊕ P⊕mnn .

Since M � M/ rad(M), the canonical surjection PM � M/ rad(M) lifts to p : PM → M . As
M �M/ rad(M), we have Im(p)+rad(M) = M , and so it follows from Nakayama lemma (Proposition
10.9 (4)) that Im(p) = M , meaning that p is surjective.

Let Q ⊂ PM be a submodule; we show that p|Q is surjective implies Q ∼= PM . Indeed, p|Q surjective
implies that top(Im(p|Q)) = top(M). Hence, using the definition of PM being projective we have a
commutative diagram

PM
∃q

{{
p
��

Q
g// // top(M).

Since Q surjects onto top(M), for ι : Q ↪→ PM the canonical inclusion we get that gιq = top(M) =
top(P ). Hence, we have Im(ιq) + rad(P ) = P . By Nakayama lemma, we have that Im(ιq) = P , which
means that ι is also surjective; thus, ι is an isomorphism, as required.

Remark 16.3. The claim for projective cover is still true for artinian algebras; but the claim for injective
hull really needs finite-dimensionality of A.

Definition 16.4. A projective resolution P• of an A-module M is a sequence

· · · → P2
d2−→ P1

d1−→ P0
d0−→M → 0

that is exact everywhere with Pk projective for all k ≥ 0. It is minimal if Pk � Ker(dk−1) is a
projective cover for all k ≥ 1. The n-th syzygy of M is Ker(dn) for (P•, d•) the minimal projective
resolution of M .

Dually, an injective coresolution I• of M is a sequence

0→M
d0−→ I0

d1−→ I1
d2−→ I2 → · · ·

that is exact everywhere with Ik injective for all k ≥ 0. It is minimal if Cok(dk−1) ↪→ Ik is an injective
hull for all k ≥ 1. The n-th cosyzygy of M is Cok(dn−1) for (I•, d•) the minimal projective resolution
of M .
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Example 16.5. *** see lecture ***

Definition 16.6. For A-modules M,N , let P• be a projective resolution of M . Define for k ≥ 0

ExtkA(M,N) :=Hk(HomA(P•, N))

=Hk(· · · −◦d←−− HomA(Pk+1, N)
−◦d←−− HomA(Pk, N)← · · · )

=
{f : Pk → N | (fd : Pk+1 → N) = 0}

{f : Pk → N | f = gd some g : Pk−1 → N}

Note that Ext0
A(M,N) = HomA(M,N).

Similar to HomA(−,−), ExtkA(−,−) also commutes with finite direct sum in both variables.

Example 16.7. *** see lecture ***

There are some other ways to calculate the Ext-groups.

Proposition 16.8. For any A-modules M,N and any k ≥ 0, we have

ExtkA(M,N) = Hk(HomA(M, I•))

where I• is an injective coresolution of N .

Proposition 16.9. For each k ≥ 1, there are natural isomorphisms

HomA(Ωk(M), N) ∼= ExtkA(M,N) ∼= HomA(M,Ω−kN),

where HomA(X,Y ) (resp. HomA(X,Y )) is the quotient of HomA(X,Y ) by the subspace consisting of
f : M → N that factors through a projective (resp. injective) A-module, i.e. there is a commutative
diagram

X
f //

''
Y

Z

77

for some projective (resp. injective) module Z.

Proof Consider the space Zk := {f : Pk → N | fdk+1 = 0} in the definition of ExtkA(M,N). Since

we have a exact sequence Pk+1 → Pk
p−→ Ωk(M)→ 0, applying HomA(−, N) yields an exact sequence

0→ HomA(Ωk(M), N)
−◦p−−→ HomA(Pk, N)

−◦dk+1−−−−−→ HomA(Pk+1, N).

By exactness, we have Zk = Ker(− ◦ dk+1) ∼= HomA(Ωk(M), N) sending each f ∈ Zk to f so that
fp = f .

It remains to show that this isomorphisms restricts to one between Bk := Im(− ◦ dk) and P :=
{f ∈ HomA(Ωk(M), N) that factors through projective}. Clearly, any f ∈ Bk (by definition) factors
through a projective Pk−1 and so Bk ⊂ P. For f : Ωk(M)→ N that factors through a projective, say,
P , we want fp = gdk some g. Consider 0 → Ωk(M) → Pk → Ωk−1(M) → 0 and apply HomA(−, N)
yields

0→ HomA(Ωk−1(M), N) −→ HomA(Pk, N)
−◦dk+1−−−−−→ HomA(Pk+1, N).

Exercise 16.10. In the case when M or N is simple, then we can use ordinary Hom instead of the
underlined/overlined version.

Proposition 16.11. Consider indecomposable projective modules Px, Py with simple tops Sx, Sy re-
spectively. Then we have an isomorphism of k-vector spaces Ext1

A(Sx, Sy) ∼= HomA(rad(Px)/ rad2(Px), Sy).

Moreover, the k-dimension of this space is the same as that of ex
rad(A)

rad2(A)
ey.
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Proof By the previous exercise, we have

Ext1
A(Sx, Sy) ∼= HomA(Ω(Sx), Sy) ∼= HomA(rad(Px), Sy) ∼= HomA(rad(Px)/ rad2(Px), Sy).

For the last part, first we have by Schur’s lemma

HomA(rad(Px)/ rad2(Px), Sy) ∼= HomA(Sy, rad(Px)/ rad2(Px))

as k-vector space, which then yields

HomA(Sy, rad(Px)/ rad2(Px)) ∼= HomA(Py, rad(Px)/ rad2(Px))

∼= HomA(eyA, ex
rad(A)

rad2(A)
) ∼= ex

rad(A)

rad2(A)
ey

where the last isomorphism uses Yoneda’s lemma.

Remark 16.12. Note that when A = kQ/I a bounded path algebra, then arrows from x to y in Q
correspond bijectively to basis elements of Ext1

A(Sx, Sy).

16.1 Ext-group versus Extensions

The previous proposition has a better intuition using another manifestation of the Ext-groups.

Definition 16.13. Two short exact sequences 0 → L
f−→ M

g−→ N → 0 and 0 → L
f ′−→ M ′

g′−→ N → 0
are equivalent if there is a commutative diagram

0 // L
f //M

g //

u
��

N // 0

0 // L
f ′
//M ′

g′
// N // 0

Remark 16.14. The map u is necessarily an isomorphism (as a consequence of 5-lemma (Lemma 17.7)
or snake lemma).

Theorem 16.15. The set of equivalence classes of short exact sequence with first term L and last
term N form an abelian group under Baer sum, and this abelian group is isomorphic to Ext1

A(N,L),
with the zero element corresponding to the equivalence class of split short exact sequences.

There exists similar description for ExtnA(N,L) but the notion of splitness is not as nice as in the case
of ses. In any case, for us, we only need to keep in mind that Ext1

A(N,L) contains information about
short exact sequence of the form 0 → L → M → N → 0; c.f. Proposition 16.11 and relation with
arrows of quiver. Having said that, we should warn that equivalence classes of ses is not the same
as isomorphism classes of the middle term, i.e. there exists non-equivalent ses with the same middle
term.
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17 Induced long exact sequence

Definition 17.1. Suppose C• = (Ck, dk)k, C
′
• = (C ′k, d

′
k)k are complexes of A-modules. A chain

map is f• : C• → C ′• given by A-module homomorphisms fk : Ck → C ′k over all k ∈ Z such that
d′kfk = fk+1dk.

Theorem 17.2 (Comparison theorem). An A-module homomorphism f : M → N extends to a
chain map on their projective resolutions, as well as a chain map on their injective coresolutions.

Proof Suppose P•, P
′
• are projective resolutions of M and N respectively. Define the desired chain

map f• : (P• → M → 0) → (P ′• → N → 0) starting from f−1 = f : M → N inductively as follows.
We take P−1 = M and P ′−1 = N .

Given fn : Pn → P ′n defined, using the fact that Pn is projective we can lift fndn+1, which yields a
commutative diagram

Pn+1

∃fn+1

vv
fndn+1

��
P ′n+1

d′n+1 // // Im(d′n+1),

with the desired chain map property d′n+1fn+1 = fndn+1.

The claim for injective coresolution can be shown analogously.

Notation. For a complex C• = (· · ·Ck
dk−→ Ck+1 → · · · ), and zk ∈ Ker(dk), denote by [zk] :=

zk + Im(dk−1).

Lemma 17.3. Suppose C•, C
′
• are complexes of A-modules and f• : C• → C ′• is a chain map. Then

for each k ∈ Z, we have an induced A-module homomorphism Hk(f•) : Hk(C•) → Hk(C ′•) given
by [zk] 7→ [fk(zk)] for any zk ∈ Ker(dk : Ck → Ck+1). Moreover, Hk preserves identity map and
additive, as well as intertwines with composition, i.e. Hk is a functor from the category of complexes
of A-modules to the category of A-modules.

Proof Since dk(zk) = 0, we have

d′k(fk(zk)) = fk+1dk(zk) = fk+1(0) = 0,

i.e. fk restricts to a map Ker(dk)→ Ker(d′k).

Suppose now that zk ∈ Im(dk−1), say, zk = dk−1(xk−1). Then we have

fk(zk) = fkdk−1(xk−1) = d′k−1fk−1(xk−1),

i.e. Im(fk|Im(dk−1)) ⊂ Im(d′k−1). Hence, Hk(f•) : Hk(C•)→ Hk(C ′•) is well-defined.

We leave the rest as exercise.

Theorem 17.4 (Induced long exact sequence). Suppose 0→ X → Y → Z → 0 is a short exact
sequence of A-modules. For any A-module M , there is the following long exact sequence:

0→ HomA(M,X)→ HomA(M,Y )→ HomA(M,Z)→
Ext1

A(M,X)→ Ext1
A(M,Y )→ Ext1

A(M,Z)→
· · · → ExtkA(M,X)→ ExtkA(M,Y )→ Extk(M,Z)→ · · ·

Proof Our first goal is to show that there are connecting homomorphisms δk : ExtkA(M,Z) →
Extk+1

A (M,X) for all k ≥ 0.
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Setup: Let P• be a projective resolution of M . Then for each k ≥ 0, we have a short exact sequence

0 → HomA(Pk, X) → HomA(Pk, Y ) → HomA(Pk, Z) → 0. Denote by CkN := HomA(Pk, N) for
N ∈ {X,Y, Z}, and ik := HomA(Pk, X → Y ) and pk := HomA(Pk, Y → Z). Then we have the
following commutative (check!) grid with exact rows:

0 // C0
X

i0 //

��

C0
Y

p0 //

��

C0
Z

//

��

0

0 // C1
X

i1 //

��

C1
Y

p1 //

��

C1
Z

//

��

0

...

��

...

��

...

��
0 // CkX

ik //

��

CkY
pk //

��

CkZ
//

��

0

...
...

...

where every column C•N = (CkN , ∂
k
N )k is a complex. (Be careful that the superscript does not mean

taking exponent here.) Note that ExtkA(M,N) = Hk(C•N ) by definition.

Defining an assignment δk : Ker(∂kZ)→ Ker(∂k+1
X ):

• Start with zk ∈ Ker(∂kZ). Since pk is surjective, zk = pk(yk) for some yk ∈ CYk .

• By commutativity of the grid, we have pk+1∂
k(yk) = ∂kpk(yk) = ∂k(zk) = 0, i.e. yk+1 :=

∂k(yk) ∈ Ker(pk+1).

• By the exactness of the (k+1)-st row, we have a unique xk+1 ∈ CXk+1 such that ik+1(xk+1) = yk+1.

• Since ∂k+1(yk+1) = ∂k+1∂k(yk) = 0, it follows from the commutativity of the grid that

ik+2∂
k+1(xk+1) = ∂k+1ik+1(xk+1) = ∂k+1(yk+1) = 0.

Hence, we can now define an assignment [zk] 7→ [xk+1].

Showing that δk : Ker(pk)→ Hk+1(C•X) given by zk 7→ [xk+1] is a well-defined homomorphism:

• Recall that we went through zk  yk  yk+1  xk+1 and that they are given by

zk = pk(yk) and yk+1 = ∂k(yk) = ik+1(xk+1).

Hence, to show that the assignment is a well-defined map of sets, we need to show that [xk+1] =
[x′k+1] for ik+1(x′k+1) = ∂k(y′k) for some other y′k ∈ CkY with pk(y

′
k) = zk.

• By assumption, we have pk(yk−y′k) = 0. Hence, we have yk−y′k ∈ Ker(pk) = Im(ik) by exactness
of the k-th row at CkY . Thus, we have some xk ∈ CkX so that ik(xk) = yk − y′k.

• By commutativity of the grid, we have

ik+1∂
k(xk) = ∂kik(xk) = ∂k(yk − y′k) = ∂k(yk)− ∂k(y′k) = ik+1(xk+1 − x′k+1).

• As ik+1 is injective, we have xk+1 − x′k+1 = ∂k(xk); hence, [xk+1] = [x′k+1] as required.

• To show that the map is actually a homomorphism, we need to check that it preserves zero,
scalar multiple, and additivity. These are all routine check and we leave these as exercise.

Showing that Im(δk|Im(∂k−1
Z )) = 0, i.e. δk lifts to a homomorphism on Hk(C•Z):

• Suppose zk = ∂k−1(zk−1) for some zk−1 ∈ Ck−1
Z .

• As pk−1 is surjective, we have zk−1 = pk−1(yk−1) some yk−1 ∈ Ck−1
Y .
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• By commutativity of the grid, we have pk∂
k−1(yk−1) = ∂k−1pk−1(yk−1) = ∂k−1(zk−1) = zk.

• This gives rise to yk+1 = ∂k(∂k−1(yk−1)) = 0, and so xk+1 = 0.

The sequence of the claim is exact everywhere:

• Combining δk with Lemma 17.3, we obtain a sequence

0→ H0
X

H0(i0)−−−−→ H0
Y

H0(p0)−−−−→ H0
Z

δ0−→ H1
X → · · ·

δk−1

−−−→ Hk
X

Hk(ik)−−−−→ Hk
Y

Hk(pk)−−−−→ Hk
Z

δk−→ · · · .

Note this is exact at H0
X and H0

Y by exactness of the Hom-functor. For convenience, we write
pk∗ := Hk(pk), i

k
∗ := Hk(ik).

• Hk(pk)H
k(ik) = Hk(pkik) = 0 by Lemma 17.3.

• Exactness at Hk
Y : Suppose that pk∗([y]) = [pk(y)] = 0. So we have pk(y) = ∂k−1(z) for some

z ∈ Ck−1
Z . On the other hand, pk−1 being surjective yields some y′ ∈ Ck−1

Y with pk−1(y′) = z.
By commutativity of the grid, we have

pk(y) = ∂k−1(pk−1(y′)) = pk∂
k−1(y′).

Hence, we have pk(y − ∂k−1(y′)) = 0. Exactness at CkY yields y − ∂k−1(y′) = ik(x) for some
x ∈ CkX . By commutativity of the gird, we have

ik+1∂
k(x) = ∂kik(x) = ∂k(y)− ∂k∂k−1(y′) = ∂k(y) = 0.

As ik+1 is injective, we have ∂k(x) = 0, and so ik∗([x]) = [ik(x)] = [y − ∂k−1(y′)] = [y], i.e.
[y] ∈ Im(ik∗) as required.

• δkpk∗ = 0: δkpk∗([y]) = δk([pk(y)]) = [x] with ik+1(x) = ∂k(y′) for some y′ such that pk(y
′) =

pk(y). Since [x] is independent of choice of y′, we can just take y′ = y. As y ∈ Ker(∂k) by
assumption, we have ik+1(x) = 0, and so x = 0 by injectivity of ik+1.

• Exactness at Hk
Z : Suppose that δk([z]) = 0. Then we have some x′ ∈ CkX so that ik+1∂

k(x′) =
∂k(y) with pk(y) = z. By commutativity of the grid, we have

∂k(y) = ik+1∂
k(x′) = ∂kik(x

′)

and so y − ik(x′) ∈ Ker(∂kY ). Hence, we have pk∗([y − ik(x′)]) = [pk(y)− pkik(x′)] = [pk(y)] = [z]
as required.

• ik∗δ
k = 0: ik∗δ

k([z]) = [ik(x)] for [x] = δk([z]). By definition of δk, we have ik(x) = ∂k−1(y) with
pk−1(y) = z. Hence, we have [ik(x)] = [∂k−1(y)] = 0 by the definition of Hk

Y .

• Exactness at Hk
X : Suppose that ik∗([x]) = [ik(x)] = 0. This means that there is some y ∈ Ck−1

Y

with ∂k−1(y) = ik(x). By commutativity of the grid and pkik = 0, we have

∂k−1pk−1(y) = pk∂
k−1(y) = pkik(x) = 0.

Hence, pk−1(y) ∈ Ker(∂k−1
Z ). By definition we have δk−1([pk−1(y)]) = [x′] with ik(x

′) =
∂k−1(y) = ik(x). Hence, [x′] = [x] and [x] ∈ Im(δk−1) as required.

This finishes the proof.

Remark 17.5. Careful reader should have noticed that there exists a connecting homomorphism long
exact sequence by applying homology to any short exact sequence of complexes; there we are only
consider the case when the complexes involved are all Hom-complexes-of-projective-resolutions.
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17.1 Other homological lemmata

Lemma 17.6 (Horseshoe lemma). Suppose 0 → L → M → N → 0 is a short exact sequence.
Then a projective resolution P• of L and a projective resolution Q• induces a projective resolution of
M given by with degree k ≥ 0 term given by Pk ⊕Qk.

In pictorial form:
...

��

...

��

...

��
PL1

��

PL1 ⊕ PN1

��

PN1

��
PL0

��

PL0 ⊕ PN0

��

PN0

��
0 // L //M // N // 0

Lemma 17.7 (Short 5-lemma). Suppose there is a commutative diagram

0 // L
f //

w
��

M
g //

u
��

N //

v
��

0

0 // L′
f ′

//M ′
g′

// N ′ // 0

with exact rows. Then the following hold.

• If w, v are both injective, then so is u.

• If w, v are both surjective, then so is v.

Proof Diagram chasing.
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18 Various homological dimensions

Definition 18.1. Let M be an A-module. The projective dimension and injective dimension of M ,
denoted by pdimM and idimM respectively, are the infimum of the length of the projective resolutions
and of the injective coresolutions respectively, i.e.

pdimM := inf{d ≥ 0 | 0→ Pd → · · · → P0 →M → 0 is a proj. res.}
= d such that 0→ Pd → · · · → P0 →M → 0 is the minimal proj. res. of M ;

idimM := inf{d ≥ 0 | 0→M → I0 → · · · → Id → 0 is an inj. cores.}
= d such that 0→M → I0 → · · · → Id → 0 is the minimal inj. cores. of M.

In case we need to clarify the ring involved, we write pdim(MA), idim(MA), etc.

The (right) global dimension of an algebra A is

gldimA := sup{pdimM |M ∈ modA}

Lemma 18.2. For M ∈ modA, we have

(1) pdimM = m ⇔ Ext>mA (M,−) = 0 and ExtmA (M,−) 6= 0.

(2) idimM = m ⇔ Ext>mA (−,M) = 0 and ExtmA (−,M) 6= 0.

In particular, we have

gldimA := sup{pdimM |M ∈ modA}
= sup{m | Ext>mA (M,N) = 0 for M,N ∈ modA}
= sup{idimM |M ∈ modA}
= gldimAop.

Proof (1) and (2) follows from the definition of Ext-groups. These yields the first three equalities
of the last part; the last equality comes from duality D : modA → modAop which sends projectives
to injectives and vice versa.

Lemma 18.3. For any ses 0→ L→M → N → 0, we have

pdimM ≤ max{pdimL,pdimM} and idimM ≤ max{idimL, idimN}.

In particular, we have

gldimA := sup{pdimM |M ∈ modA}
= sup{pdimS | S simple A-module}
= gldimAop

= sup{idimM |M ∈ modA}
= sup{idimS | S simple A-module}

Proof Horseshoes lemma, or use long exact sequence. For the second part, second equality follows
from repeatedly applying the first part, and second equality comes from the previous lemma.

Proposition 18.4. gldimA = 0 if and only if A is semisimple.

Proof Global dimension zero is equivalent to every module - in particular, simple module - being
projective (i.e. direct summand of AA). Hence, every modules are semisimple.
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Proposition 18.5. For an acyclic quiver Q, we have gldimkQ ≤ 1. Moreover, this is an equality if
and only if Q1 6= ∅.

Proof For each simple kQ-module, we have a short exact sequence

0→ radPx → Px → Sx → 0,

so it is enough to show that radPx is projective. In fact, we show that radPx ∼=
⊕

(x→y)∈Q1
Py, and

the inclusion map is given by (left-)multiplication α · − : Py → Px for each (α : x→ y) ∈ Q1.

By construction, top(radPx) =
⊕

(x→y)∈Q1
Sy, and so we have

⊕
(x→y)∈Q1

Py � radPx. Suppose∑
p λpp ∈

⊕
(x→y)∈Q1

Py such that

0 =
∑

(α:x→y)∈Q1

(α · −)(
∑
p

λpp) =
∑

(α:x→y)∈Q1

∑
p: path with s(p)=y

λp(αp).

But all the paths αp appeared are different and thus linear independent in Px; hence, λp ≡ 0 - as
required.

Note that if there is an arrow α ∈ Q1, then the above argument shows that pdimSs(α) = 1; thus

gldimkQ = 1. On the other hand, if there is no arrow in Q, then kQ = k|Q0| is semisimple.

Remark 18.6. If k = k, then kQ are the only k-algebras, up to Morita equivalence, with global
dimension at most one; see any book on quiver representation for proof. Otherwise, one needs to work
with valued quivers which is enhancement of quivers with added field extension data (an example is
in Homework 1 Exercise 1).
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19 Hereditary algebra

Definition 19.1. An algebra A is (right) hereditary if every submodule of a projective (right) A-
module is projective.

One can define left hereditary dually (replacing right modules by left; or equivalently, replacing projec-
tives by injectives), but it turns out the two notions are the same - such a property is called ‘left-right
symmetry’.

Theorem 19.2. The following are equivalent for an algebra A.

(1) A is right hereditary, i.e. M ⊂ P ∈ projA⇒M ∈ projA.

(2) A is left hereditary, i.e. injA 3 I �M ⇒M ∈ injA.

(3) gldimA ≤ 1.

(4) radP ∈ projA for any P ∈ projA.

(5) I/ soc I ∈ injA for any I ∈ injA.

Proof (3) ⇒ (1): We have a short exact sequence 0 → M → P → P/M → 0. Take any Y ∈
modA and consider the long exact sequence induced by applying HomA(−, Y ) to this ses. Then,
as Ext>0

A (P, Y ) =, we have ExtkA(M,Y ) ∼= Extk+1
A (P/M, Y ). Since pdimP/M ≤ 1 by the global

dimension assumption, the right-hand space is zero for all k ≥ 0; hence, Ext>0(M,Y ) = 0 for all
Y ∈ modA, i.e. M is projective.

(1) ⇒ (3): Let P be the projective cover of an A-module M . Then we have a short exact sequence

0 → Ker(p) → P
p−→ M → 0. It follows from the assumption that Ker(p) is projective, and thus

pdimM ≤ 1.

(2) ⇔ (3): (Exercise) Dual argument to the case of (1) ⇔ (3).

(1) ⇒ (4): Immediate.

(4) ⇒ (1): Induction on d = dimk P . If d = 1, then there is nothing to show. Assume d > 1. Write
P = P1 ⊕ P2 with P1 indecomposable and let p : P � P1 be the canonical projection. Then we have
a map f = pi given by the composition of p with the canonical inclusion i : M ↪→ P .

If Im(pi) = P1, i.e. pi is surjective, then P1 being projective implies that pi splits; hence, M ∼=
P1 ⊕ (M ∩ P2). Since dimk P2 < d, by the induction hypothesis we have that the submodule M ∩ P2

of the projective module P2 is also projective. Hence, M is also projective.

If Im(pi) 6= P1, then M ⊂ (radP1) ⊕ P2. By the assumption radP1 is projective; hence, so is
(radP1)⊕ P2. Since dimk(radP1)⊕ P2 < d, by the induction hypothesis, we have M projective.

(2) ⇔ (5): Dual argument to the case of (2) ⇔ (5).

Corollary 19.3. Being hereditary is left-right symmetric, i.e. A is hereditary if and only if so is Aop.

Corollary 19.4. kQ is hereditary for any finite acyclic quiver.

Proof We have already seen that gldimkQ ≤ 1.

Remark 19.5. A better result is that, when k is algebraically closed, then hereditary is the same as
being Morita equivalent to kQ. More generally, being hereditary is the same as being Morita equivalent
to Dlab-Ringel’s species (roughly, ‘path algebra’ of quiver with added field extensions datum).
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20 Heredity ideal and chain

Definition 20.1. An idempotent (two-sided) ideal I ⊂ A is one that is generated by an idempotent,
i.e. I = AeA for some e = e2 ∈ A. Such an ideal is minimal if e is primitive.

Remark 20.2. Originally, an idempotent ideal is one which satisfies I = I2. But this is equivalent
to the above definition. Indeed, I + rad(A) is an idempotent ideal in A := A/ rad(A), but ideal in
A is necessary of the form AeA for some idempotent e ∈ A with e = e + rad(A). Hence, we have
I + rad(A) = AeA+ rad(A). Thus, I2 = I implies that (I + rad(A))k = I + radk(A) for all k ≥ 1, but
radk(A) = 0 for large enough k, and so I = AeA.

Lemma 20.3. Suppose Q is a finite acyclic quiver and x ∈ Q0. The following hold for the idempotent
e = ex ∈ kQ.

(1) eAe is a simple algebra.

(2) AeA is a projective right A-module.

(3) The quotient algebra A/AeA ∼= kQ′ where Q′ is obtained from Q by removing x and all arrows
attached to it.

Proof (1) Since e = ex is primitive and Q is acyclic, we have eAe is given by the path algebra of a
one-vertex (corresponding to x) no-loop quiver, i.e. eAe ∼= k.

(2) Note that AeA has a basis given by all paths that go through x ∈ Q0, so we have a right A-module
indecomposable decomposition AeA ∼=

⊕
p peA =

⊕
pA with p varies over all paths that end at x.

Since pA is spanned by all paths starting from p, this basis bijects with the set of paths that starts
from t(p). Thus, we have pA ∼= et(p)A = eA as right A-modules.

(3) Exercise (This is already in Homework assignment 2).

Remark 20.4. The same result hold for any hereditary algebra A ((3) becomes “A/AeA is also hered-
itary”).

In particular, for any permutation (x1, . . . , xn) of all elements of Q0, define fi =
∑

j≥i exj and then
we have a chain of idempotent ideals

A = Af1A ⊃ Af2A ⊃ · · · ⊃ AfnA ⊃ 0 (20.1)

such that AfiA/Afi+1A is a projective A/Afi+1A-module (c.f. Homework assignment 2 last question)
and fiAfi/fiAfi+1Afi semisimple.

Definition 20.5 (Quasi-hereditary algebra). An idempotent ideal AeA is heredity if AeA is a
projective right A-module and eAe ∼= EndA(eA) is semisimple (or equivalently, e rad(A)e = rad(eAe) =
0).

An algebra A is quasi-hereditary if there exists a chain

A = I1 ) I2 ) · · · ) In ) 0 (20.2)

of (idempotent) ideals in A such that It/It+1 is a heredity ideal of A/It+1 for all t. In such a case,
(20.2) is called a heredity chain. For ‘simplicity’, we often abbreviate quasi-hereditary algebra and
quasi-hereditary to just qha and qh.

Remark 20.6. Note that we do not assume fi− fi+1 to be primitive (even in the case of bounded path
algebra) for Ii = AfiA and Ii+1 = Afi+1A.

Remark 20.7. This notion is Morita-invariant – indeed, if e and e′ are equivalent primitive idempotents,
and efi 6= fi for some i, then e′ ∈ AeA ⊂ AfiA. Hence, for simplicity, it is safe for us to assume the
algebra A is basic – especially in the case when k is algebraically closed we can then assume A to be
given by a quiver algebra kQ/I.
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Example 20.8. We have already seen that kQ for acyclic Q is quasi-hereditary with heredity chain
(20.1). Moreover, every chain of idempotent ideals of kQ is heredity. We note that the same hold for
arbitrary hereditary algebra.

Observe that if A is quasi-hereditary, then so is any algebra Morita equivalent algebra to A. Indeed,
each ideal appearing in the chain must be generated by an idempotent f that is given by summing
over equivalent classes of primitive idempotents. Hence, we can, for simplicity, assume A ∼= kQ/I is
given by a bounded path algebra.

Now we can construct a poset structure on Λ := Q0 from the heredity chain (20.2) as follows. Define
xCy if the smallest idempotent ideal in (20.2) that contains ey does not contain ex, and then adjoining
reflexive relation xE x. This yields a poset (Λ,E).

Conversely, given a poset structure (Λ,E) on the set Λ of simple A-modules, we get a chain of
idempotent of the form, say, (20.1) with fi−fi+1 (the sum of) a primitive idempotent ei (and all those
equivalent to ei). We call this the chain (of idempotent ideals) induced by (Λ,E). If, furthermore,
such an induced chain is heredity, then we say that (A, (Λ,E)) is quasi-hereditary with respect to
(Λ,E). We may omit the set Λ and just use E if context is clear.

Example 20.9. Consider the bounded path algebra A = kQ/I given by

Q :

1
a
xx

c
&&

2

b &&

3

dxx4

, I = 〈ab− cd〉, AA =
1
23
4
⊕ 2

4 ⊕ 3
4 ⊕ 4 .

Then we have a heredity chain

A ⊃ A(e2 + e3 + e4)A ⊃ Ae4A ⊃ 0

which yields a poset (Q0,E) whose Hasse diagram coincide with Q.

Exercise 20.10. Let (P,E) be a finite poset. Let ~P be the Hasse quiver of P , i.e. there is a path
x→ y if xB y. Let IP to be the admissible ideal of Q generated by p− q whenever p, q are paths with
the same source and target. Show that the incidence algebra k[P ] := k~P/IP of P is quasi-hereditary
with respect to P itself.

Let us fix a few more notations for convenience.

Assumption 20.11. Up to Morita equivalent, and by assuming k is algebraically closed, we can
simplify A to a quiver algebra with the following setup.

• A ∼= kQ/I for some bounded quiver (Q, I) with Q0 = {1, 2, . . . , n}.

• 1 = e1 + · · ·+ en is the primitive idempotent decomposition of A.

• For each 1 ≤ j ≤ n, define fj := e≥j := ej + ej+1 + · · ·+ en and e≤j := e1 + e2 + · · ·+ ej.

• For any idempotent e, define ê := 1− e.
While the definition of heredity chain does not require the difference of idempotent between each
layer to be primitive even in the quiver algebra setting, it will be convenient to assume this is the
case, as we can always refine the chain to such a form. Hence, we make the following assumption
when A is quasi-hereditary.

• A has a heredity chain of the form (20.1), or in idempotent-free notation (20.2).

• The associated poset structure is denoted by (Λ,E).

Remark 20.12. The assumption on A being a quiver algebra and k being algebraically closed are really
not necessary. The argument does not change so much. The annoyance is in dealing with having
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multiple primitive idempotents being equivalent when working with the ring theoretic definition of
qha.

Notation. Let add(M) be the class (or subcategory) of A-modules given by direct summand of finite
direct sum of M .

Lemma 20.13. If (aAeA)A is projective for some a, e ∈ A, then we have aAeA ∈ add(eA).

Proof Proof via infinite direct sum: There is a surjective homomorphism p :
⊕

b∈aA eA
(b) � aAeA

given by (ea(b))b∈aA 7→
∑

b∈eA bea
(b) (the last summation is well-defined because the range is a direct

sum – meaning that only finitely many ea(b) is non-zero). Hence, as aAeA is projective, the short

exact sequence 0→ Ker(p)→ eA(aA) p−→ aAeA→ 0 splits and so aAeA is a direct summand of eA(eA).
But aAeA is finite-dimensional and so it must be direct summand of finitely many copies of eA.

Proof without using infinite direct sum: We want to find a split ses ending with (eA)⊕m → aAeA→ 0.
First consider the eAe-module aAe. As this is finitely generated, we have a surjective homomorphism
p : (eAe)⊕m � aAe in mod eAe. Now p ⊗eAe eA is surjective as tensor functor is right exact. This
yields the following composition q of surjective A-module homomorphism

q : (eA)⊕m ∼= (eAe)⊕m ⊗eAe eA
p⊗eAeeA−−−−−→ aAe⊗eAe eA

µ−→ aAeA

where µ is the multiplication map abe ⊗ ec 7→ abec. Hence, the short exact sequence 0 → Ker(q) →
eA⊕m → aAeA→ 0, which has a projective last term by assumption splits.

Lemma 20.14 (Left-right symmetry of heredity chain). Let e = e2 be idempotent of A.

(1) If AeA is projective as a right, or left, A-module, then the multiplication map µ : Ae⊗eAe eA→
AeA given my ae⊗ eb 7→ aeb is bijective.

(2) If eAe is semisimple and the multiplication map µ : Ae ⊗eAe eA → AeA is bijective, then both
(AeA)A and A(AeA) are projective.

In particular, being quais-hereditary is a left-right symmetric notion, i.e. (A, (Ik)k≥1) is quasi-hereditary
with a heredity chain (Ik)k≥1 if and only if so is (Aop, (Ik)k≥1)

Proof (1) Consider the multiplication map µ̂ : Ae⊗eAe eA→ A with range in A instead. Tensoring
on the left by eA yields a right A-module homomorphism µ̂eA := eA⊗A µ̂ of the form

µ̂eA : eA⊗A Ae⊗eAe eA→ eA⊗A A ∼= eA that is explicitly given by ec⊗ ae⊗ eb 7→ ecaeb,

which is bijective (as rewriting eA ⊗A Ae ⊗eAe eA ∼= eAe ⊗eAe eA ∼= eA yields the identity map).
This implies that µ̂X is also bijective for any X = fA a direct summand of eA; hence, also for any
X ∈ add(eA). Thus, it follows from Lemma 20.13 that µ̂AeA = µ is also bijective. The same argument
applies for the case of left modules (by tensoring on the right instead).

(2) Since eAe is semisimple, Ae is semisimple and projective as right eAe-module. Hence, Ae⊗eAeeA ∼=
eA⊕m as right A-module with m the number of simple direct summands of Ae as right eAe-module.
Hence, the assumption on µ yields an isomorphism of right A-modules eA⊕m ∼= Ae⊗eA eA

µ−→ (AeA)A.
The same argument applies for the case of right modules.

Lemma 20.15. Let e, f be idempotents of A such that ef = f = fe. Then we have an isomorphism
e A
AfAe

∼= eAe
(eAe)f(eAe) of algebras with e = e+AfA.

Proof e(a+AfA)e = eae+AfA corresponds to eae+ eAefeAe = eae+ eAfAe.

The following simple observation underlies the immense power of quasi-hereditary have in terms of
studying their homological behaviour.
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Proposition 20.16. Suppose A is a quasi-hereditary algebra with heredity chain (20.1). Then the
following hold.

(1) A := A/AfnA is quasi-hereditary with heredity chain

A = Af1A ⊃ Af2A ⊃ · · · ⊃ Afn−1A ⊃ AfnA = 0

where fi := fi + AfnA. Conversely, if there is a heredity chain of A of length n − 1 as above,
and AfnA is heredity ideal of A, then A is quasi-hereditary with a heredity chain of the form
(20.1).

(2) Let ê := ê1 = f2. Then B := êAê is quasi-hereditary with heredity chain

êAê = êAf2ê ⊃ êAf3Aê ⊃ · · · ⊃ êAfnAê ⊃ 0.

Conversely, if there is a heredity chain of B of length n− 1 as above, and e1Ae1 is semisimple,
then A is quasi-hereditary with a hereditary chain of the form (20.2).

Proof (1) The definition of heredity chain immediately implies that cutting of the last term yields
a heredity chain on the quotient algebra A.

(2) Note first that êfi = fi = fiê, so the chain shown is indeed a chain of idempotent ideals of êAê.

We show the first part by induction on n. Note that thanks to (1), so long as êAfnAê is a heredity ideal
of êAê, (êAfiê)i=1,...,n is a heredity chain if and only if so is (êAfiAê)i=1,...,n−1, and so the required
claim follows from the induction hypothesis. Hence, we only need to show that êAfnAê is a heredity
ideal of êAê.

Under our setup, we have fn = en a primitive idempotent. By Lemma 20.13, we have AenA is
isomorphic to (enA)⊕m for some m ≥ 1. Since en is a summand of ê, we have êen = en. Hence, we
have

êAenAê ∼= EndA(êA, êAenA) ∼= EndA(êA, ê(enA)⊕m) ∼= EndA(êA, (enA)⊕m) ∼= (enAê)
⊕m,

which is a projective right êAê-module (c.f. Homework assignment 3).

Finally, using êen = en = enê, we have idempotent truncation algebra

(êenê)(êAê)(êenê) = êenêAêenê = enAen,

and so its semisimplicity follows from the assumption that AenA is a heredity ideal.

Finally, for the converse direction, removing all the ê from the displayed chain and replace A = Af1A ⊃
Af2A yields a chain of idempotent ideals of A. We only need to show that Af1A/Af2A is a heredity
ideal, but Af1A = A and so Af1A/Af2A is clearly projective as A/Af2A-module. It remains to check
that e1Ae1 to be semisimple, which is immediate form the assumption.

Iteratively applying the above proposition, one get that ‘Being QH is closed under taking appropriate
truncation’:

(A, (Ae≥jA)j) QHA ⇒ so is (A/Ae>iA, (Ae≥jA)j≤i) and (e≤iAe≤i, (e≤iAe≥jAe≤i)j≥i).

In contrast to the linear ordering given by a heredity chain, the poset viewpoint that is favoured in
algebraic Lie theory yields the following. Here we use the notation eΓ :=

∑
x∈Γ ex.

Subposet Γ ⊂ Λ Truncation

ideal/down set :⇔ (y ≤ x ∈ Γ =⇒ y ∈ Γ) A/AêΓA

coideal/up set :⇔ (y ≥ x ∈ Γ =⇒ y ∈ Γ) eΓAeΓ
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Let us look at another non-hereditary example.

Example 20.17. Suppose A = kQ/I is a quiver algebra with Q acyclic. Then we can order the
vertices of Q by v1, . . . , vn so that (i → j) ∈ Q1 implies i < j. Then A is quasi-hereditary with
heredity chain (20.1). Note that A also has an “opposite” hereditary chain (A(1 − ft)A)1≤t≤n. But
not every chain of idempotent ideals is heredity in this generality. For example, consider

A = kQ/I with Q = (1
α−→ 2

β−→ 3), I = (αβ)

Then Ae2A is not heredity as (Ae2A)A = kα⊕ e2A ∼= S2 ⊕ P2 /∈ projA.

It turns out that having heredity chain for any possible chain of idempotent is a characterisation of
hereditary algebras.

Theorem 20.18 (Dlab-Ringel 1989). A is hereditary if and only if any chain of idempotent ideals
can be refined to a heredity chain.

We have already discussed the only-if direction; for the converse, see Dlab-Ringel’s paper – the proof
can be fully understood using the material taught in this course, but we delay (or even omit) the proof
for time purpose.

In the same paper, they also proved the following.

Theorem 20.19 (Dlab-Ringel 1989). If gldimA ≤ 2, then A is quasi-hereditary.

If time allows, we will talk about an alternative proof of this given by Tsukamoto, which uses some idea
by Iyama’s proof of what is now called Iyama’s finiteness theorem nowadays - a result which roughly
translates to ‘every small enough category has a quasi-hereditary (hence, smooth) non-commutative
resolution’; we remark that Tsukamoto showed that A is something stronger than quasi-hereditary
called right strongly quasi-hereditary.

In any case, let us give some remark about the heredity chain - or the induction mechanism - appeared
in these proofs.

• In Dlab-Ringel’s proof, the last term of the heredity chain (i.e. In = AfnA in (20.2)) is associated
to the indecomposable projective module eA = fnA with the minimal Loewy length. Then they
show that gldimA/AfnA ≤ gldimA and so the proof iterates by replacing A with A/AfnA.

• Tsukamoto’s proof uses a dual induction mechanism. The heredity chain she constructed starts
with A ⊃ AêA so that S = eA/ rad(eA) is a simple module of projective dimension 1 (such
a simple module always exist). After showing that A/AêA is semisimple, one then shows that
gldim êAê ≤ gldimA – this last part is a (guided) exercise in Homework assignment 3. Now one
can then iterate by replacing A with êAê. If time allows, we will explain this proof in a later
lecture.

In general, the heredity chains that appear in these two approaches are different – the later one
has a special property: the standard modules have projective dimension at most 1, or equivalently
pdim(It/It+1)A ≤ 1.
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21 Trace, reject, highest weight category

We mentioned standard modules in the previous section; these modules are what lead to the creation
of the theory of quasi-hereditary algebra (precisely, highest weight category). The prime example of
standard modules are Verma modules of complex semisimple Lie algebra and dual Weyl modules of
algebraic groups.

We will re-introduce quasi-hereditary algebras using standard (and costadard) module approach.

Recall that [M : Si] is the multiplicity of the simple module Si as composition factor of M , and this
is the same as dimk HomA(Pi,M) = dimk HomA(M, Ii) when k is algebraically closed.

Definition 21.1. Let M ∈ modA and X be a class of modules in modA. The trace of X in M is

TrX (M) :=
∑
f

Im(f) ⊂M

where f varies over all HomA(X,M) with X ∈ X .

The reject of X in M is

RejX (M) :=
⋂
f

Ker(f) ⊂M

where f varies over all HomA(M,X) with X ∈ X .

Example 21.2. • Tr0(M) = 0,Rej0(M) = M .

• TrA(M) = M,RejA(M) = 0. (∵ Yoneda lemma; see the last case below.)

• TrA/ radA(M) = soc(M),RejA/ radA(M) = rad(M).

• Let e =
∑

i∈Π ei be a sum of primitive idempotents ei’s over i ∈ Π for some indexing set Π.
Consider the projective P =

⊕
i∈Π Pi, injective I =

⊕
i∈Π Ii, and semisimple S =

⊕
i∈Π Si.

(i) Tr{Pi|i∈Π}(M) = TrP (M) is the (unique) minimum submodule L of M that contains all
composition factors Si with i ∈ Π, i.e. [L : Si] = [M : Si] for all i ∈ Π. To see this,
recall from Yoneda lemma that we have HomA(Pi,M) ∼= Mei given by sending a map
f : Pi → M to f(ei). Each of such f(ei) generate a simple composition factor Si. In
particular, Pj/TrP (Pj) is the unique quotient of Pj such that [Pj : Si] 6= 0⇒ i /∈ Π.

We can formulate this in a more explicit way as follows. Write P = eA for e = e2 ∈ A, then
we have HomA(P, Pi) = eiAe, and so A-submodule TrP (Pi) of Pi generated by elements of
eiAe are precisely eiAeA, i.e.

TreA(eiA) = eiAeA; and likewise, TreA(A) = AeA.

(ii) Rej{Ii|i∈Π}(M) is the kernel of the (unique) minimal quotient N of M that contains compo-
sition factors Si with i ∈ Π. The argument is sole dual to the case of trace by considering
HomA(M, Ii) ∼= D(Mei) with dimension being [M : Si] = dimk HomA(Pi,M).

Example 21.3. Consider A = kQ/I given by Q : 1
α //2

β //3, and I = 〈αβ〉. Then we have

• HomA(P3, P2) ∼= e2Ae3 = kβ. Hence, TrP3(P2) = Im(β · − : P3 → P2) ∼= P3.

• HomA(P2, P1) ∼= e1Ae2 = kα. Hence, TrP2(P1) = Im(α · − : P2 → P1) ∼= S2. Note that
HomA(P3, P1) ∼= e1Ae3 = 0 and so TrP2⊕P3(P1) ∼= S2.

(Recommended: Think about this again using module diagram.)

Definition 21.4. Consider a poset structure (Λ = Q0,E) on the set of simple A-modules. For each
λ ∈ Λ, define the following modules.
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• The standard module associated to λ is

∆(λ) = ∆λ := Pλ/Tr5λ(Pλ), where Tr5λ(M) := Tr{Pµ|µ5λ}(M).

In other words, ∆λ is the (unique) maximum quotient of Pλ such that [Pλ : Sµ] 6= 0⇒ µE λ.

• The costandard module associated to λ is

∇(λ) = ∇λ := Rej5λ(Iλ), where Rej5λ(M) := Rej{Iµ|µ5λ}(M).

In other words, ∇λ is the (unique) maximum submodule of Iλ such that [Iλ : Sµ] 6= 0⇒ µE λ.

In practice, one can just take linearise the partial order (i.e. take a total order that refines C) and the
co/standard modules arising will be the same.

Example 21.5. Let A = kQ/I given by

Q : 1

α
��

2
γ // 3

β // 4

, I = 〈αβ〉

For Λ = {1 < 2 < 3 < 4}, we have

∆(1) = S1,∆(2) = S2,∆(3) = S3,∆(4) = S4.

On the other hand, if Λ is given by the opposite order 4 < 3 < 2 < 1, then ∆(i) = Pi for all i.

Notation. Let X be a class of modules in modA. An A-module M is X -filtered if there is a filtration

0 ⊂M` ⊂M`−1 ⊂ · · · ⊂M2 ⊂M1 = M

with Mi/Mi+1 ∈ X for all i ≥ 1. In such a case, we write M ∈ F(X ). We call the minimal such `
the X -length of M .4

Notation. Let X = {Xi}i∈I be a class of indecomposable modules in modA indexed by a poset (I,E).
Then we write XCλ for the subset {Xj | j C λ}, and likewise XBλ, etc.

Definition 21.6 (Highest weight category – standard version). Let A be a finite-dimensional
algebra with the set of simples S := {S(λ) | λ ∈ Λ} indexed by a poset (Λ,E).

We say that the category modA of finitely generated A-modules is a highest weight category (often
abbreviated to hwc) with respect to (Λ,E) (or sometimes, with respect to (∆,E)) if there is a set
∆ = {∆(λ) | λ ∈ Λ} of indecomposable modules that satisfy the following conditions.

(S1) ∃πλ : ∆(λ)� S(λ) such that Ker(πλ) ∈ F(SCλ); and

(S2) ∃pλ : P (λ)� ∆(λ) such that Ker(pλ) ∈ F(∆Bλ).

Remark 21.7. (1) ∆(λ) = P (λ) for any maximal element λ ∈ Λ.

(2) ∆(λ) = S(λ) whenever λ is a minimal element.

(3) In particular, if |Λ| = |Q0| = 1, then A is necessarily a simple algebra.

(4) When modA is hwc, then Ker(πλ) = rad ∆(λ) as the existence of surjective pλ forces ∆(λ) to
have only a simple top.

(5) When modA is hwc, then ∆(λ) are necessarily the standard modules associated to λ as defined
in Definition 21.4. If one starts with a poset (Λ,E) and construct its standard modules ∆, then
one alternative way to check modA is hwc is to verify the following hold:

4For general X , there is no Jordan-Hölder property for F(X ) with respect to X .
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• [∆(λ) : S(λ)] = 1,

• A ∈ F(∆),

• (Λ,E) is an adapted order in the sense of Dlab-Ringel, i.e. for any indecomposable module
M with [topM : S(i)] 6= 0 and [socM : S(j)] 6= 0 and i incomparable with j, then there
exists k with [M : S(k)] 6= 0 such that k B i or k B j (equivalently, k B i and k B j).

The first condition ensures that (S1) is satisfied, and the last ensures (S2).

We want to show that hwc and qha is just the two sides of the same coin.

Lemma 21.8. For e = ex a primitive idempotent and A := A/AeA, we have res∆A(y) = ∆A(y) for
all y.

Proof In Example 21.2 we have explained that Tr5y(P (y)) = eyAfA for f the sum of primitive

idempotents ez in with {z | z 5 y}.

Likewise, for the projective A-module P (y) = eyA, we have TrBx(P (y)) = eyAf − exA. But f − ex =
f . Hence, ∆A(y) and ∆A(y) are the same space.

Theorem 21.9. A is quasi-hereditary with respect to (Λ,E) if, and only if, modA is a highest weight
category with respect to (Λ,E).

Proof qha ⇒ hwc: We proceed by induction on the length n of the heredity chain. If n = 1, then
being a qha is the same as saying A is semi-simple, which forms a hwc naturally as ∆(1) = P (1) = S(1)
and A = P (1) (when A is a quiver algebra; otherwise, A = P (1)⊕m).

When n > 1, suppose for the moment the following hold:

• ∆(n) = P (n) satisfies (S1), and

• TrP (n)(P (j)) = P (n)⊕mj for some mj ≥ 0.

Under this assumption, applying the induction hypothesis and Lemma 20.16, we have that modA/AfnA
is a hwc. By Lemma 21.8, for every j 6= n, the standard A-modules ∆(j) in modA and in modA/AfnA
coincide. Hence, the fact that TrP (n)(P (j)) is direct sum of P (n) means that (S2) is satisfied; and we
are done.

Let us now show the two properties above do hold. Since AfnA = AenA is heredity, we have enAen
semisimple, which is equivalent to saying that rad(enA)en = en rad(A)en = 0, i.e. [rad(enA) : S(n)] =
0 (the first claimed property).

For the second property, as AenA is projective, so is its direct summand ejAenA for any j. By
Lemma 20.13, we have ejAenA = enA

⊕mj = P (n)⊕mj for some mj ≥ 0. Thus by Example 21.2, we
have TrP (n)(P (j)) = ejAenA = P (n)⊕mj .

qha ⇐ hwc: Again we prove by induction on n = |Λ|. When n = 1, we get a simple algebra and the
claim follows. Suppose that n > 1. We consider the two-sided ideal AfnA generated by the primitive
idempotent en = fn and show that it is heredity; in which case, we consider the (full) subcategory of
modA formed by iterative extensions of S(i) for i < n (equivalently, M ∈ modA such that MenA = 0).
We can identify this full subcategory with modA/AenA, which is also a hwc by Lemma 21.8, and so
the claim follows by applying induction hypothesis on A/AenA.

Let us now check that AenA is indeed a heredity ideal. By (S1), we have

1 = [P (n) : S(n)] = dimEndA(S(n)) EndA(enA) = dimEndA(S(n)) enAen,

which implies that enAen is a simple algebra.
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To show that AfnA is projective, we use observation from Example 21.2 again that TrP (n)(P (i)) =
eiAfnA for all i < n. Since P (i) ∈ F(∆Di), the trace TrP (n)(P (i)) is direct sum of copies of ∆(n) =
P (n), and so eiAfnA ∼= P (n)⊕mj for somemj ≥ 0, which means that AfnA =

⊕
j ejAfnA is projective,

as required.

Recall that quasi-hereditary is a left-right symmetric notion, so there should be a left version of HWC.

Definition 21.10 (HWC – costandard module version). Let A be a finite-dimensional algebra
with the set of simples S := {S(λ) | λ ∈ Λ} indexed by a poset (Λ,E).

We say that the category modA of finitely generated A-modules is a highest weight category with
respect to (Λ,E) if there exists a set ∇ := {∇(λ) | λ ∈ Λ} of indecomposable modules satisfying the
following conditions.

(C1) ∃ιλ : S(λ) ↪→ ∇(λ) such that Cok(ιλ) ∈ F(SCλ); and

(C2) ∃iλ : ∇(λ) ↪→ I(λ) such that Cok(iλ) ∈ F(∇Bλ).

Note that in such a case, ∇ is necessarily the set of costandard modules associated to elements of Λ.

Remark 21.11. For more general setting – such as the category of rational representations over an
algebraic group, this is actually the more preferable definition since the category there does not
have projective generator (but injective ones do exists); the category is not equivalent to the module
category of a finite-dimensional algebra (but somewhat locally is), and Λ is an infinite set. Various
modification is necessary; we will not touch on this subject here; see original Cline-Parshall-Scott
paper.

Corollary 21.12. The two definitions of hwc are equivalent.

Proof We show the following conditions are equivalent.

(1) (modA,Λ,E) is a hwc in the ∇ module setting.

(2) (modAop,Λ,E) is a hwc in the ∆ module setting.

(3) (Aop,Λ,E) is qha.

(4) (A,Λ,E) is qha.

(5) (modA,Λ,E) is a hwc in the ∆ module setting.

Indeed, we have (1)⇔(2) by passing through duality functor, which sends ∇A(i) to ∆Aop(i). (2)⇔(3)
by Proposition 21.9. (3)⇔(4) by Lemma 20.14. And finally, (4)⇔(5) by Proposition 21.9 again.
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22 Elementary properties of qha

22.1 Finite global dimension

Throughout this subsection, assume (A,Λ,C) is qha.

Notation. For λC µ in Λ, denote by

[λ, µ] := {ν | λE ν E µ},
[λ,−] := {ν | λE ν},
[−, µ] := {ν | ν E µ},

the interval between λ and µ, the coideal generated by λ, and the ideal generated by µ, respectively.
For a subset Γ ⊂ Λ, define

hΓ := max{m ≥ 0 | λ0 C λ1 C · · ·C λm with λi ∈ Γ∀i}

the maximal length of Γ-supported chain in Λ. We further shorten the notation in the two special
cases hBλ := h[λ,−] and hCλ := h[−λ].

Lemma 22.1. We have

pdim ∆(λ) ≤ hBλ and pdimS(λ) ≤ hΛ + hCλ.

In particular, sup{pdimM |M ∈ F(∆)} ≤ hΛ and gldimA ≤ 2hΛ.

Proof ∆(λ) case: Induction on λ ∈ Λ along B. For maximal λ, we have ∆(λ) = P (λ), which has
projective dimension 0. Assume that λ ∈ Λ is non-maximal. Since the kernel K of the canonical
projection P (λ)� ∆(λ) is filtered by ∆(µ) for µB λ, and that hBµ < hBλ for any such µ, we have

pdimK ≤ max{pdim ∆(µ) | µB λ} ≤ max{hBµ | µB λ} < hBµ

where the first inequality comes from Lemma 18.3, and the second inequality follows by the induction
hypothesis. Hence, we have pdim ∆(λ) ≤ 1 + pdimK ≤ hBλ.

pdimM for M ∈ F(∆): Use bound on pdim ∆(λ) with Lemma 18.3.

S(λ) case: Induction on λ ∈ Λ along C. For minimal λ, we have S(λ) = ∆(λ), so it follows from
the claim on pdim ∆(λ) that we have pdimS(λ) ≤ hBλ ≤ hΛ. Assume that λ ∈ Λ is non-minimal.
Similar to the previous part, we have hCµ < hCλ for any µC λ. Hence, for M ∈ F(S(Bλ)), it follows
by induction hypothesis and Lemma 18.3 that

pdimM ≤ max{hΛ + hCν | ν ∈ [−, λ]} < hΛ + hCλ.

Now consider the canonical ses 0→ rad ∆(λ)→ ∆(λ)→ S(λ)→ 0 with rad ∆(λ) ∈ F(S(Cλ)). Then
we have by Lemma 22.2 that

pdimS(λ) ≤ max{pdim ∆(λ), 1 + pdim rad ∆(λ)}
≤ max{hBλ, hΛ + hCλ}
≤ max{hΛ, hΛ + hCλ} ≤ hΛ + hCλ,

as required.

gldimA ≤ 2hΛ: Use bound on pdimS(λ) for λ maximal and Lemma 18.3.
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Lemma 22.2. For any ses 0 → L → M → N → 0, we have pdimN ≤ max{1 + pdimL,pdimM}.
(c.f. Lemma 18.3)

Proof Use long exact sequence induced by applying HomA(−, X) to the ses, i.e.

· · · → Extk−1(L,X)→ Extk(N,X)→ Extk(M,X)→ Extk(L,X)→ Extk+1(N,X)→ · · · .

Namely, by Lemma 18.2, we have Ext>pdimL(L,X) = 0 = Ext>pdimM (M,X). So, for k ≥ max{1 +
pdimL,pdimM}, exactness of the les yields Extk(N,X) = 0 for all X, meaning that pdimN ≤ k by
Lemma 18.2.

Exercise 22.3. Show a dual result: pdimL ≤ max{pdimM,−1 + pdimN}.

Example 22.4. The bounds are optimal without any further assumption on the algebras. Consider
A = kQ/I with

Q = ( 1
α1
((
2

β1

hh
α2 ** · · ·
β2

hh

αn−2,,
n− 1

βn−2

jj

αn−1
))
n

βn−1

ll ), I = (αiαi+1, βi+1βi, αi+1βi+1 − βiαi, βn−1αn−1)

and Λ = {1C 2C · · ·C n}. Then gldimA = 2n− 2 = 2hΛ (Exercise).

22.2 Hom/Ext vanishing

Lemma 22.5. For λ, µ ∈ Λ, we have

(1) HomA(∆(λ),∆(µ)) 6= 0 ⇒ λE µ.

(2) HomA(∇(λ),∇(µ)) 6= 0 ⇒ λD µ.

(3) HomA(∆(λ),∇(µ)) 6= 0 ⇒ λ = µ. In such a case, the Hom-space is isomorphic to EndA(S(λ)).

Proof (1), (2): This follows from the construction of ∆ and ∇.

(3): As ∆(λ) is quotient of P (λ), HomA(∆(λ),M) 6= 0 implies that [M : S(λ)] 6= 0; likewise,
HomA(N,∇(λ)) 6= 0 implies that [N : S(λ)] 6= 0. The first part of the claim now follows by tak-
ing M = ∇(µ) and N = ∆(λ). The second part follows from the fact that there is a non-zero
homomorphism ∆(λ)� S(λ) ↪→ ∇(λ) and that [∆(λ) : S(λ)] = 1 = [∇(λ) : S(λ)].

Lemma 22.6. For M ∈ modA and λ, µ ∈ Λ, we have

(1) Ext1
A(∆(λ),M) 6= 0 ⇒ [M : S(µ)] 6= 0 for some µB λ.

(2) Ext1
A(N,∇(λ)) 6= 0 ⇒ [N : S(µ)] 6= 0 for some µC λ.

(3) Ext1
A(∆(λ),∆(µ)) 6= 0 ⇒ λC µ.

(4) Ext1
A(∇(λ),∇(µ)) 6= 0 ⇒ λB µ.

(5) Ext1
A(∆(λ),∇(µ)) = 0.

Proof (1): Applying HomA(−,M) to the canonical ses 0 → Kλ → P (λ) → ∆(λ) → 0 yields an
exact sequence:

0→ (∆(λ),M)→ (P (λ),M)→ (Kλ,M)→ Ext1
A(∆(λ),M)→ 0.

By the assumption, there is some non-zero homomorphism f : Kλ → M . Since Kλ ∈ F(∆(Bλ)),
every composition factor in the top of P (λ) is given by S(µ) for some µB λ. Note that the image of
f must be generated by (the image of one of such) S(µ), and the claim follows.
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(3): By (1), we have [∆(µ) : S(ν)] for some ν B λ. By (S1), we have ν E µ, and so we have λC ν E µ.

(2), (4): Dual to (1), (3) respectively.

(5): Suppose on the contrary that the space is non-zero. By (1), we have [∇(µ) : S(ν)] 6= 0 for some
ν B λ. By (C2) we have ν C µ, and so λ C µ. But by (2) we have [∆(λ) : S(ν ′)] 6= 0 for some ν ′ C µ
and by (S1) we have ν ′ C λ, and so µC λ, contradicting λC µ.

In fact, the following more general statements also hold.

Proposition 22.7. For λ, µ ∈ Λ, the following hold.

(1) Ext>0
A (∆(λ),∆(µ)) = 0 ∀λ 5 µ.

(2) Ext>0
A (∇(λ),∇(µ)) = 0 ∀λ 4 µ.

(3) Ext>0
A (∆(λ),∇(µ)) = 0 ∀λ, µ.

We omit the proof in lectures for time constraint; c.f. Homework Assignment 4. The strategy is, as
usual, proof by (reverse) induction.

Remark 22.8. As a consequence of this more general statement, if we totalise Λ to λ1 < λ2 < · · · < λn,
then we have a so-called exceptional sequence

(∆(λ1),∆(λ2), · · · ,∆(λn)), and its dual sequence (∇(λn),∇(λn−1), · · · ,∇(λ1))

in the derived category of modA. Many exceptional sequence considered in algebraic geometry indeed
yields quasi-hereditary algebras by constructing the so-called tilting complex using (iterative) universal
extensions of these sequences. In the algebra setting, the tilting complex is actually a module, and
this is one way to construct of the so-called characteristic tilting module, i.e. the additive generator
of F(∆) ∩ F(∇) - for details on this module, see Klucznik-Koenig’s lecture notes.

A consequence of the Ext-vanishing property (including the one in the remark above) is the following.

Proposition 22.9. We have the following:

F(∆) = {X ∈ modA | Ext1
A(X,∇(λ))∀λ ∈ Λ}

= {X ∈ modA | ExtkA(X,∇(λ))∀λ ∈ Λ, k ≥ 1}
= {X ∈ modA | Ext1

A(X,Y ) ∀Y ∈ F(∇)}
= {X ∈ modA | ExtkA(X,Y ) ∀Y ∈ F(∇), k ≥ 1}

The same statement holds after swapping the two variables in the Ext-spaces and replacing ∆ by ∇.
In particular, HomA(∆(λ),−) is exact on F(∇) and HomA(−,∇(λ)) is exact on F(∆).

22.3 BGG reciprocity

Structures are studied through invariants, for example, isomorphism classes of finite-dimensional vector
spaces can be distinguished by its dimension. For general algebra, we have a slightly refined notion
called dimension vector

dimM := (dimEndA(S(λ))Meλ)λ∈Λ = ([M : S(λ)])λ∈Λ,

which is clearly invariant across isomorphism classes of finite-dimensional modules – but the converse
in general do not hold. Note also that EndA(S(λ)) ∼= k when k is algebraically closed.

As we have been using now and then, having a short exact sequence of vector spaces 0→ L→M →
N → 0 yields a relation on its invariants (the dimension): dimkM = dimk L+ dimkN . This relation
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of course holds true for dimension vectors of modules. One can start pondering upon if there are
other (numerical) invariants that can behave in a way compatible with ses’ (hence, with homological
algebra). This can be obtained to changing (Z-)basis of the following free abelian group.

Definition 22.10. The Grothendieck group K0(modA) of modA is the abelian group generated by
the isomorphism classes [M ] of A-modules M , with relations [L] + [N ] − [M ] generated by all ses
0→ L→M → N → 0.

K0(modA) is a free abelian group with canonical basis given by the simple modules {[S(λ)] | λ ∈ Λ}.
Moreover, [M ] expressed in the canonical basis is just dimM .

Exercise 22.11. When gldimA <∞, show that K0(modA) has a Z-basis given by {[P (λ)] | λ ∈ Λ}
and also in {[I(λ)] | λ ∈ Λ}.

After totalising Λ to {λ1 < λ2 < · · · < λn}, it follows from (S1) that dim∆(λ) = (d∆
µ,λ := [∆(λ) :

S(µ)])µ form an upper unitriangular matrix (‘uni’ meaning diagonals are all 1’s)

dim∆ =

 | · · · |
dim∆(λ1) · · · dim∆(λn)

| · · · |

 = (d∆
µ,λi

)µ,λi .

Now we can see that {[∆(λ)] | λ ∈ Λ} form a Z-basis of K0(modA), called the standard basis. Note
that the same discussion holds in verbatim if we replace ∆ by ∇ everywhere.

For M ∈ modA, let (M : ∆(λ)) (resp. (M : ∇(λ))) be the λ-entry of M with respect to the standard
basis (resp. costandard basis). Then the change of basis (‘from ∆ or ∇ to S’) formula yields

dimM =
∑
λ∈Λ

dim∆(λ)(M : ∆(λ)) =
∑
λ∈Λ

dim∇(λ)(M : ∇(λ)). (22.1)

In the case when M ∈ F(∆) (resp. M ∈ F(∇)), then (M : ∆(λ)) (resp. (M : ∇(λ)))is precisely the
number of copies of ∆(λ) (resp. ∇(λ)) in any ∆-filtration (resp. ∇-filtration) of M .

Lemma 22.12. For M ∈ F(∆), we have (M : ∆(λ)) = dimEndA(S(λ)) HomA(M,∇(λ)).

Proof By induction on the ∆-length (number of standard modules) in any ∆-filtration of M . If ∆-
length is 1, then this is Lemma 22.5 (3). For larger ∆-length, we take any ses 0→ X →M → ∆(µ)→ 0
(which exists by the ∆-filtration assumption) and apply HomA(−,∇(λ)). By Proposition 22.9, this
Hom functor is exact on F(∆) and kills all higher Ext-groups in the induced long exact sequence.
Now the claim follows by applying induction hypothesis on the induced ses.

Proposition 22.13 (BGG reciprocity). For any λ, µ ∈ Λ, we have

(P (µ) : ∆(λ)) = [∇(λ) : S(µ)].

In particular, if we consider the Cartan matrix CA := (ci,j)i,j where ci,j := [P (j) : S(i)], then we have
CA = (dim∆)(dim∇)t.

Remark 22.14. BGG stands for Berstein-Gel’fand-Gel’fand.

Proof By Lemma 22.12, we have

(P (µ) : ∆(λ)) = dimEndA(S(λ)) HomA(P (µ),∇(λ)) = [∇(λ) : S(µ)].

For the final part, notice that CA has column given by dimP (λ), and so the claim follows by combining
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the BGG reciprocity with the formula (22.1):

(CA)−,λ = (cν,λ)ν = dimP (λ) =
∑
µ

dim∆(µ)(P (λ) : ∆(µ))

=
∑
µ

dim∆(µ)[∇(µ) : S(λ)] =
∑
µ

d∆
ν,µd

∇
λ,µ

= ((dim∆)(dim∇)t)−,λ

Remark 22.15. These two bases (canonical and standard) of K0(modA) is intimately related to the
so-called Kazhdan-Lusztig’s conjecture (now a theorem). The conjecture originally concerns the how
the standard basis transforms to the Kazhdan-Lusztig basis of the group algebra ZW of a Weyl group
W = 〈s ∈ S〉/(braid relations) (or more generally, Hecke algebra Hv(W )). For example, in (Dynkin)
type An, we haveW = Sn+1 the symmetric group of rank n+1 and S = {si = (i, i+1) | i = 1, 2, . . . , n}.

The group algebra ZW has a standard basis, denoted by Hw for w ∈ W , so that HxHy := Hxy.
5

There is an involution (meaning anti-automorphism of order 2) on ZW given by sending the invertible
element Hx to its inverse H−1

x (which is just Hx−1 in our current exposition, but in the context of
Hecke algebra, it is more complicated to actually compute the inverse). This is called bar-involution
Hx := (Hx)−1. 6 Kazhdan and Lusztig showed that there is a unique basis {Hx | x ∈ W}, called the
Kazhdan-Lusztig basis of ZW that is invariant under the bar-involution, and Hs = He + Hs.

7 The
change of basis is written in the form:

Hx =
∑
y∈W

hy,x(v)Hy with hy,x(v) ∈ vZ[v] for y 6= x and hx,x(v) = 1.

hy,x(v) is called the Kazhdan-Lusztig polynomial. The Kazhdan-Lusztig conjecture (now a theorem)
predicts that every coefficient in this polynomial is a non-negative integer.

It turns out that this can be reformulated as a problem on looking at homological structure of quasi-
hereditary algebra. Properly speaking, we consider an abelian category O0 built out of certain rep-
resentations of finite-dimensional complex semi-simple Lie algebra of type W . O0 is a highest weight
category, and so it is equivalent to modA for some finite-dimensional quasi-hereditary algebra A. We
can then speak about simple, standard, costandard, and projective - we note that the standard mod-
ules are given by the Verma modules here. The set of simples in O0 (hence, modA) are labelled by
w ∈W . It turns out that K0(O0) ∼= K0(modA) has a natrual structure of ZW -module, and is in fact
isomorphic to the regular representation (ZW )ZW . Moreover, we have the following correspondence
for all w ∈W :

χ : K0(modA)
∼ // ZW

[∆(w)] oo // Hw

[P (w)] oo // Hw

[S(w)] oo // H∨w

Here, H∨w is the dual Kazhdan-Lusztig basis - it is dual to Hw with respect to a symmetrizing trace
t : Hx 7→ δx,e (where e is the identity element of W ), i.e. t(H∨xHy−1) = δx,y. Now we can see that
the defining form of Kazhdan-Lusztig polynomial is just the same formula for changing the basis via
dim∆ on K0(modA), and gives a natural ‘explanation’ why Kazhdan-Lusztig conjecture is true. As
one quick observation we can see from the categorical property (S2) that the summation in the change
of basis (of ZW ) formula can be taken x ≤ y (the order here is the Bruhat order).

5For Hv(W ), it is H2
s = He + (v−1 − v)Hs for s ∈ S, and HxHy = Hxy whenever the `(x) + `(y) = `(xy).

6for general Hecke algebra, the bar-involution swaps the quantum parameter v± ↔ v∓ in the case we take the
presentation as H2

s = He + (v−1 − v)Hs for the generators s – e.g. the transpositions (i, i + 1) in type A
7H=He + vHs for Hv(W ).
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