You may assume all algebras are finite-dimensional over a field \mathbb{k}. You may attempt the exercises with the additional assumption of \mathbb{k} being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes=\otimes_{\mathbb{k}}$.

Ex 1.

1. Let X, M be an A-module. The reject of X in M is the submodule

$$
\operatorname{Rej}_{X}(M):=\bigcap_{f} \operatorname{Ker}(f) \subset M
$$

Show that $M / \operatorname{Tr}_{X}(M) \cong D \operatorname{Rej}_{D X}(D M)$ where $D=\operatorname{Hom}_{\mathbb{k}}(-, \mathbb{k})$ is the \mathbb{k}-linear duality functor.
2. Consider $A=\mathbb{k} Q / I$ with
$Q=\left(1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\gtrless}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\longrightarrow}} \cdots \underset{\beta_{n-2}}{\stackrel{\alpha_{n-2}}{\gtrless}} n-1 \underset{\beta_{n-1}}{\stackrel{\alpha_{n-1}}{\gtrless}} n\right), \quad I=\left(\alpha_{i} \alpha_{i+1}, \beta_{i+1} \beta_{i}, \alpha_{i+1} \beta_{i+1}-\beta_{i} \alpha_{i}, \beta_{n-1} \alpha_{n-1}\right)$.
(i) Show there is only one partial order on $\{1,2, \ldots, n\}$ for which A becomes quasi-hereditary.
(ii) Show that gldim $A=2 n-2$.

Ex 2. For a quasi-hereditary algebra $(A,(\Lambda, \unlhd))$, show the following.

1. Let \mathcal{X} be a subset of $\{\Delta(\lambda) \mid \lambda \in \Lambda\}$. If $\operatorname{Ext}_{A}^{1}(\Delta(\lambda), N)=0$ for all $\Delta(\lambda) \in \mathcal{X}$, then $\operatorname{Ext}_{A}^{1}(M, N)=0$ for any \mathcal{X}-filtered module M.
Hint: Induction on Δ-length.
2. $\operatorname{Ext}_{A}^{>0}(\Delta(\lambda), \Delta(\mu))=0$ for all $\lambda \nsupseteq \mu$.

Hint: Reverse induction on λ (i.e. starting from λ maximal) and consider $\operatorname{Hom}(-, \Delta(\mu))$.
Note: We have already learnt that $\operatorname{Ext}_{A}^{1}(\Delta(\lambda), \Delta(\mu))=0$ for all $\lambda \nexists \mu$.

Ex 3. For a quasi-hereditary algebra $(A,(\Lambda, \unlhd))$, show the following.

1. If X is Δ-filtered, then so is $\Omega(X)$, where $\Omega(X)$ is the kernel of the projective cover of X.
2. If $\operatorname{Ext}_{A}^{1}(M, N)=0$ for all Δ-filtered module M, then $\operatorname{Ext}_{A}^{>0}(M, N)=0$.

Hint: Consider dimension shifting $\operatorname{Ext}_{A}^{k}(X, Y) \cong \operatorname{Ext}_{A}^{k-1}(\Omega(X), Y)$ where $\Omega(X)$ is the kernel of the projective cover of X.
3. $\operatorname{Ext}_{A}^{1}(M, \nabla(\mu))=0$ for all $\mu \in \Lambda$ and all Δ-filtered module M.

Hint: Induction on Δ-length. (Or if you have done Exercise 2, you can quote from your solution from there.)
4. $\operatorname{Ext}_{A}^{>0}(M, \nabla(\mu))=0$ for all $\mu \in \Lambda$ and all Δ-filtered module M.

Ex 4. Consider the quiver algebra $A=\mathbb{k} Q / I$ given by

You can use the following information in the exercise: every indecomposable A-module M is uniserial of length at most 4 , and $[M: S(i)] \leq 1$ for $i=2,3$ and $[M: S(1)] \leq 2$ with equality if and only if $M=P(1)$.

1. Write down all the standard and costandard modules of A.
2. Write down all indecomposable Δ-filtered modules.
3. Write down all indecomposable ∇-filtered modules.
4. There are 3 indecomposable modules. Show that we can label each of them by $T(i)$ so that the following are satisfied:

- $[T(i): S(i)]=1$.
- $\Delta(i)$ is a submodule of $T(i)$.
- $\nabla(i)$ is a quotient of $T(i)$.

5. Write down the projective resolutions of each $T(i)$.
6. Show that $\operatorname{Ext}_{A}^{>0}(T(i), T(j))=0$ for any i, j.
