You may assume all algebras are finite-dimensional over a field \mathbb{k}. You may attempt the exercises with the additional assumption of \mathbb{k} being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes=\otimes_{\mathfrak{k}}$.
Ex 1. Let e be an idempotent of an algebra A.

1. Show that $\operatorname{Hom}_{A}\left(e A, \operatorname{Hom}_{e A e}(A e, M)\right) \cong M$ as $e A e$-module.
2. Show that indecomposable projective (right) $e A e$-modules are of the form $f A e$ for a primitive idempotent $f \in A$ with $f e \neq 0$.
3. Show that indecomposable injective (right) $e A e$-modules are of the form $D(e A f)$ for a primitive idempotent $f \in A$ with $f e \neq 0$.
4. Show that $-\otimes_{e A e} e A$ sends projective A-modules to projective A-modules, and $\operatorname{Hom}_{e A e}(A e,-)$ sends injective A-modules to injective A-modules.
** Ideal solution is to prove this directly using part 1 and 2. If you only present this as a consequence of property of adjointness, no mark will be awarded.
5. Suppose that $M \in \bmod e A e$ has a projective resolution $\cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow M \rightarrow 0$. Show that there is a projective resolution of $M \otimes_{e A e} e A \in \bmod A$ where the first two term are given by direct sums of direct summands of $e A$.
6. Suppose that $M \in \bmod A$ has a projective resolution $\cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow M \rightarrow 0$ such that, for both $i \in\{0,1\}$, the projective module P_{i} is given by direct sums of direct summands of $e A$. Show that $M e \otimes_{e A e} e A \cong M$.
Hint: Use part 2 and find an appropriate commutative diagram.

Ex 2.

1. Show that $\operatorname{Hom}_{A}(M, N) \cong D\left(M \otimes_{A} D N\right)$ as vector spaces.
2. Let $P_{\bullet}=\left(P_{i}, d_{i}: P_{i} \rightarrow P_{i-1}\right)_{i \geq 0}$ be a projective resolution of an A-module M, and define

$$
\operatorname{Tor}_{1}^{A}(M, N):=H_{1}\left(P \bullet \otimes_{A} N\right)=\frac{\operatorname{Ker}\left(d_{1} \otimes_{A} N\right)}{\operatorname{Im}\left(d_{2} \otimes_{A} N\right)}
$$

the first homology group of the complex $P_{\bullet} \otimes_{A} N$. Show that $\operatorname{Ext}_{A}^{1}(M, N) \cong D \operatorname{Tor}_{1}^{A}(M, D N)$ as \mathbb{k}-vector spaces.
3. Show that $D \operatorname{Hom}_{A}(M, A) \cong M \otimes_{A} D A$ as right A-modules.
4. Let ${ }_{A} X_{B}$ be an A - B-bimodule. If M is a C - A-bimodule and N is a C - B-bimodule. Show that $\operatorname{Hom}_{C^{\mathrm{op} \otimes B}}\left(M \otimes_{A} X, N\right) \cong \operatorname{Hom}_{C^{\mathrm{op} \otimes A}}\left(M, \operatorname{Hom}_{B}(X, N)\right)$ as vector spaces.
5. Let $B:=A^{\mathrm{op}} \otimes A$. Show that $\operatorname{Hom}_{B}(A, B) \cong \operatorname{Hom}_{A}(D A, A)$ as A - A-bimodules.

Hint: $B \cong(D D A) \otimes A \cong \operatorname{Hom}_{\mathbb{k}}(D A, A)$ as B-modules.

Ex 3. Consider the quiver algebra $A=\mathbb{k} Q / I$ given by

$$
Q: 1 \underset{\beta_{1}}{\alpha_{1}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\sim}} 3 \overbrace{\beta_{3}}^{\alpha_{3}} 4, \quad I=\left(\beta_{3} \alpha_{3}, \alpha_{i} \alpha_{i+1}, \beta_{i+1} \beta_{i}, \beta_{i} \alpha_{i}-\alpha_{i+1} \beta_{i+1} \mid i=1,2\right)
$$

For $i \in\{1,2,3,4\}$, let $\Delta(i):=P_{i} / \alpha_{i} A$ (with $\alpha_{4}:=0$ as a convention).

1. Write down the minimal projective resolution of $\Delta(1)$.
2. Show that $\operatorname{Ext}_{A}^{k}(\Delta(i), \Delta(j))=0$ whenever $i>j$ for any $k \geq 0$.
3. Show that $\operatorname{Ext}_{A}^{k}(\Delta(i), \Delta(j))=0$ whenever $k>3$ for any i, j.
4. Compute $\operatorname{dim}_{\mathbb{k}} \operatorname{Ext}_{A}^{k}(\Delta(i), \Delta(j))$ for all possible i, j, k. Show your working.
5. Consider the chain of ideals

$$
A=A f_{1} A \supset A f_{2} A \supset A f_{3} A \supset A f_{4} A \supset A f_{5} A=0
$$

where $f_{i}=\sum_{j=i}^{4} e_{j}$ for $i<4$ and $f_{5}=0$. Let $A_{i}:=A / A f_{i+1} A$. Compute the A_{i} - A_{i}-bimodule structure of $\bar{I}_{i}:=A f_{i} A / A f_{i+1} A$ and show that
(i) \bar{I}_{i} is projective as a right A_{i}-module, and
(ii) $\bar{I}_{i} \operatorname{rad}\left(A_{i}\right) \bar{I}_{i}=0$.

Ex 4. Let e be an idempotent of an algebra A.

1. Show that indecomposable projective $\operatorname{End}_{A}(e A)$-modules are of the form $\operatorname{Hom}_{A}(e A, f A)$ with primitive idempotent $f \in A$ satisfying $f e \neq 0$.
2. Show that if $(A e A)_{A}$ is projective, then $A e$ is a projective (right) $e A e$-module. Hint (i): Assumption implies that $A e A \cong(e A)^{\oplus m}$ (since $e A^{\oplus A} \rightarrow A e A$ splits).
Hint (ii): $A e=A e A e$ and use part 1.
3. Show that if $(A e)_{e A e}$ is projective, then gldim $(e A e) \leq \operatorname{gldim} A$ for any simple A-module S. Hint: $(-) e=-\otimes_{A} A e$ takes simple module to simple module or zero.

Let I be a two-sided ideal of A such that I_{A} is projective, and take $B:=A / I$.
4. Show that $\operatorname{pdim}\left(B_{A}\right) \leq 1$.
5. Show that $\operatorname{pdim}\left(M_{A}\right) \leq 1+\operatorname{pdim}\left(M_{B}\right)$.

Hint (i): Prove by induction.
Hint (ii): Construct a short exact sequence in mod A involving M and a projective B-module.

Ex 5.

1. Consider $A=\mathbb{k} \overrightarrow{\mathbb{A}}_{4}$. Consider the sequence an ordering $\Lambda:=\{3 \triangleleft 4 \triangleleft 1 \triangleleft 2\}$ on Q_{0}. Describe all the standard A-modules and costandard A-modules

$$
\Delta(k):=P_{k} / \operatorname{Tr}_{>k}\left(P_{k}\right) \text { and } \nabla(k):=\operatorname{Rej}_{>k}\left(I_{k}\right)
$$

You can show this in Loewy diagram form or in quiver representation form.
2. For each $k=1,2,3,4$, find an indecomposable A-module $T(k)$ such that there is a surjective A-module homomorphism $T(k) \rightarrow \nabla(k)$ and an injective A-module homomorphism $\Delta(k) \rightarrow$ $T(k)$.
3. Show that $\operatorname{Ext}_{A}^{1}(T(i), T(j))=0$ for all $i, j \in\{1,2,3,4\}$.
4. Let $A=\mathbb{k} Q / I$ for

$$
Q=\left(1 \xrightarrow{\alpha_{1}} 2 \xrightarrow{\alpha_{2}} 3 \xrightarrow{\alpha_{3}} 4 \xrightarrow{\alpha_{4}} 5\right), I=\left\langle\alpha_{1} \alpha_{2}, \alpha_{3} \alpha_{4}\right\rangle
$$

Find an ordering \unlhd on Q_{0} so that the following conditions are satisfied:

- A is quasi-hereditary with respect to $\left(Q_{0}, \unlhd\right)$, and
- $\operatorname{pdim} \Delta(k) \leq 1$ for all k where $\Delta(k)$ is the associated standard modules.

Justify your answer.

