Ex 1. Suppose $A=\mathbb{k} Q / I$ is a bounded path algebra.

1. Find the bounded quiver $\left(Q^{\prime}, I^{\prime}\right)$ so that $\mathbb{k} Q^{\prime} / I^{\prime} \cong A^{\mathrm{op}}$.
2. Let e_{x} be a primitive idempotent. Find the bounded quiver $\left(Q^{\prime \prime}, I^{\prime \prime}\right)$ so that $\mathbb{k} Q^{\prime \prime} / I^{\prime \prime} \cong$ $A / A e_{x} A$.
3. Find an example of A so that

- every indecomposable projective A-module is uniserial, but
- there exists a non-uniserial indecomposable injective A-module.

Note/Hint: Such an example can be found with $I=0$ and Q acyclic.

Ex 2.

1. Consider the following representation M of the linearly oriented $\overrightarrow{\mathbb{A}}_{5}$-quiver:

$$
\mathbb{k} \xrightarrow{1} \mathbb{k} \xrightarrow{\binom{1}{0}} \mathbb{k}^{2} \xrightarrow{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)} \mathbb{k}^{2} \xrightarrow{(1,1)} \mathbb{k}
$$

Find the indecomposable decompositions of M in the cases when the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is of rank 1 and of rank 2. You may use the fact that there are indecomposable modules of the form $U_{i, j}$ for $1 \leq i \leq j \leq 5$ such that

$$
U_{i, j} e_{x}=\left\{\begin{array}{ll}
\mathbb{k} & \text { if } i \leq x \leq j ; \\
0 & \text { otherwise },
\end{array} \text { and } U_{i, j} \alpha_{k}= \begin{cases}\text { id } & \text { if } i \leq k<j \\
0 & \text { otherwise }\end{cases}\right.
$$

2. Consider $A=\mathbb{k} Q / I$ given by

$$
Q: 1 \underset{\delta}{\underset{\sim}{\alpha}} 2 \stackrel{\beta}{\longrightarrow} 3 \xrightarrow{\gamma} 4, \quad I=\langle\alpha \beta \gamma-\delta \gamma\rangle
$$

(a) Find a basis for the 2-dimensional socle of the indecomposable projective P_{1}.
(b) Show that $\operatorname{rad} P_{1}$ is not indecomposable.
3. Consider the following quiver

$$
Q: \quad{ }_{\alpha} C_{1} \frac{\beta}{\frac{\beta}{\gamma}} 2
$$

Let $I_{1}:=\left\langle\alpha^{2}-\beta \gamma, \gamma \beta-\gamma \alpha \beta, \alpha^{4}\right\rangle$ and $I_{2}:=\left\langle\alpha^{2}-\beta \gamma, \gamma \beta, \alpha^{4}\right\rangle$. Show that $\mathbb{k} Q / I_{1} \cong \mathbb{k} Q / I_{2}$ as \mathbb{k}-algebra when the characteristic of \mathbb{k} is not 2 .

Ex 3. Consider $A=\mathbb{k} Q / I$ and $A^{\prime}=\mathbb{k} Q / I^{\prime}$ given by

$$
Q: 1 \underset{\beta}{\stackrel{\alpha}{\rightleftharpoons}} 2, \quad I=\langle\alpha \beta, \beta \alpha\rangle, \quad I^{\prime}=\langle\alpha \beta\rangle .
$$

Recall that the projective cover of a module M is a projective module P_{M} equipped with a surjective homomorphism $p_{M}: P_{M} \rightarrow M$ such that $\left.p_{M}\right|_{P} \neq 0$ for all direct summands P of P_{M}. Recall also that the syzygy $\Omega(M)$ of a module M the $\operatorname{kernel} \operatorname{Ker}\left(p_{M}: P \rightarrow M\right)$. The n-th syzygy $\Omega^{n}(M)$ of a module M is the syzygy of $\Omega^{n-1}(M)$ for all $n \geq 1$ (with the convention $\Omega^{0}(M):=M$).

1. Show that A is self-injective, i.e. every indecomposable projective module is also an injective module.
2. Describe the $\Omega^{k}\left(S_{x}\right)$ of each simple module S_{x} and $k=1,2$, for both algebra A and A^{\prime}.
3. Show that the global dimension of A is infinite (or equivalently, that the k-th syzygy of any simple is non-zero for all $k \geq 0$).
4. Show that the global dimension of A^{\prime} is 2, i.e. $\Omega^{3}\left(A^{\prime} / \operatorname{rad} A^{\prime}\right)=0$ and $\Omega^{2}\left(A^{\prime} / \operatorname{rad} A^{\prime}\right) \neq 0$.
