Ex 1. Let A be the ring

$$
\left(\begin{array}{cc}
\mathbb{R} & \mathbb{C} \\
0 & \mathbb{C}
\end{array}\right)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a \in \mathbb{R}, b, c \in \mathbb{C}\right\}
$$

1. Show that A is an \mathbb{R}-algebra and find the dimension of A over \mathbb{R}.
2. There are two simple A-modules. Describe them.
3. Write down a composition series of the free A-module A_{A}.

Ex 2. Let $A=A_{1} \times A_{2}$ be a direct product of two \mathbb{k}-algebras A_{1}, A_{2}. Note that there are algebra homomorphisms $\pi_{i}: A \rightarrow A_{i}$. Consider the idempotents $e_{1}:=\left(1_{A_{1}}, 0\right), e_{2}:=\left(0,1_{A_{2}}\right)$ of A.

1. For $M \in \bmod A$, show that $M=M_{1} \oplus M_{2}$ with $M_{i}=M e_{i}$ for both $i \in\{1,2\}$, i.e. $M=M e_{1}+M e_{2}$ with $M e_{1} \cap M e_{2}=0$.
2. Show that π_{i} induces a simple A-module structure on the simple A_{i}-modules for both $i \in$ $\{1,2\}$.
3. Show that there exists a natural A_{i}-action on the direct summand M_{i} of M (in the notation of (1)). In particular, classify the simple A-modules.

Ex 3. Consider the formal power series ring $\mathbb{k}[[x]]:=\left\{\sum_{i=0}^{\infty} \lambda_{i} x^{i} \mid \lambda_{i} \in \mathbb{k}\right\}$ with

- addtition $\left(\sum_{i} \lambda_{i} x^{i}\right)+\left(\sum_{i} \mu_{i} x^{i}\right)=\sum_{i}\left(\lambda_{i}+\mu_{i}\right) x^{i}$,
- scalar multiplication $\lambda\left(\sum_{i} \lambda_{i} x^{i}\right)=\sum_{i}\left(\lambda \lambda_{i}\right) x^{i}$,
- multiplication $\left(\sum_{i} \lambda_{i} x^{i}\right)\left(\sum_{j} \mu_{j} x^{j}\right)=\sum_{k}\left(\sum_{i+j=k} \lambda_{i} \mu_{j}\right) x^{k}$.

1. Show that $\mathbb{k}[[x]]$ is a commutative \mathbb{k}-algebra.
2. Determine the invertible elements in $\mathbb{k}[[x]]$.
3. Show that $\mathbb{k}[[x]]$ is a local algebra, i.e. there exists a unique maximal left (equivalently, right) ideal.
4. Classify the simple modules of $\mathbb{k}[[x]]$.
5. Classify the simple modules of $\mathbb{k}[x]$. Hint: (a) Maximal two-sided ideals of a ring are determined by the irreducible elements. (b) $\mathbb{k}[x]$ is commutative.

Ex 4. Let A be the following \mathbb{k}-algebra:

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & x & y \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, x, y \in \mathbb{k}\right\}
$$

Note that for every matrix in A, the (1,1)-entry and the (3,3)-entry must be the same. Let e_{1} be the idempotent of A given by the matrix with 1 in the (1,1)- and (3,3)-entry and 0 everywhere else; and $e_{2}=1_{B}-e_{1}$.

1. Show that both $e_{1} A$ and $e_{2} A$ have a unique simple submodules and they are isomorphic.
2. Let S_{1} be the simple module in (1). Show that $S_{2}:=e_{2} A / S_{1} \not \neq S_{1}$.
3. Find the composition series of $e_{1} A$ and $e_{2} A$.

Ex 5. Consider the truncated polynomial ring $B=\mathbb{k}[x] /\left(x^{2}\right)$ and let S be its unique simple module $S=\mathbb{k} y$.

1. Find a basis for the Hom-spaces $\operatorname{Hom}_{B}(X, Y)$ for $X, Y \in\{B, S\}$. Note: One of these spaces have dimension 2, and all other have dimension 1 .
2. Show that $\operatorname{End}_{B}(S \oplus B) \cong A$ where A is the algebra in Exercise 3 above.
3. Find the bouned path algebra presentation of B, i.e. a \mathbb{k}-algebra isomorphism $B \cong \mathbb{k} Q / I$.
