Ex 1. Let A be a K-algebra. We call a K-algebra B a direct factor of A if $A \cong B \times B'$ for some K-algebra B'.

- (1) Show that $Z(A) \cong \operatorname{End}_{A \otimes_K A^{\operatorname{op}}}(A)$ as rings.
- (2) Show that B is a direct factor of A if, and only if, B is a direct summand of A as $A \otimes_K A^{\text{op}}$ module. (Hint: Idempotent e of a K-algebra Λ gives rise to decomposition $\Lambda e \oplus \Lambda(1-e)$ of left Λ -modules.)
- (3) Show that B is a direct factor of KG if, and only if, B is a direct summand of $K(G \times G)$.

Ex 2. For $V, W \in KG \mod$, show that the following are KG-modules isomorphisms

(1) $(V \otimes_K W)^* \cong V^* \otimes_K W^*$, (2) $V^* \otimes_K W \cong \operatorname{Hom}_K(V, W)$.

Ex 3. Recall that $\operatorname{End}_{K}(V)$ is a ring where multiplication is composition.

- (1) Find the multiplication on $V^* \otimes_K V$ that makes the canonical isomorphism $\operatorname{End}_K(V) \cong V^* \otimes_K V$ as an isomorphism of rings.
- (2) Suppose $V \in KG \mod$. Show that triv_G is a direct summand of $V^* \otimes_K V$ when $\dim_K M$ is invertible in K. (Hint: fix a basis of V and consider also the dual basis.)

Ex 4. Suppose $H \leq G$ is a subgroup. For any $g \in G$, let ${}^{g}H := gHg^{-1} = \{{}^{g}h := ghg^{-1} \mid h \in H\}$, and define for each *KH*-module *W* a $K({}^{g}H)$ -module ${}^{g}W := \{{}^{g}w \mid w \in W\}$ (${}^{g}w$ is just a formal symbol) with ${}^{g}h \cdot {}^{g}w := {}^{g}(hw)$. Show that

- (1) $\operatorname{Ind}_{g_H}^G({}^gW) \cong \operatorname{Ind}_H^G(W)$ as KG-module;
- (2) ${}^{g}V \cong V$ as KG-module for all $V \in KG \mod$.

Ex 5. Let $H \leq G, V \in KG \mod$ and $W \in KH \mod$. Show that

- (1) $V \otimes_K \operatorname{Ind}_H^G(W) \cong \operatorname{Ind}_H^G(\operatorname{Res}_H^G(V) \otimes_K W);$
- (2) $\operatorname{Ind}_{H}^{G}(W^{*}) \cong (\operatorname{Ind}_{H}^{G}(W))^{*};$
- (3) use (2) to give an alternative proof of permutation module being self-dual.

Ex 6. Let Ω_r be the set of r-subsets (=subsets of size r) of $\{1, 2, \ldots, n\}$ for an integer $n \ge 1$.

- (1) Find a subgroup $H \leq \mathfrak{S}_n$ (and the reason) such that $K\Omega_r \cong \operatorname{Ind}_H^{\mathfrak{S}_n} \operatorname{triv}_H$.
- (2) Let π_r be the character of $K\Omega_r$. Find $\pi_r(1)$ for any r, and find $\pi_2(g)$ for all $g \in \mathfrak{S}_4$.

Deadline: 22nd November, 2022