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Chapter 1

Informal Introduction

Number Theory
—Diophantis equations: Algebraic NT, Arithmetic geometry, Birch-Swinnerton-Dyer Conjecture
—Primes: Analytic NT, Riemann Hypothesis

This course is a an introduction of arithmetic geometry

V :


f1(x1, . . . , xm) = 0

...

fn(x1, . . . , xm) = 0

System of polynomial equations with Z-coefficient (algebraic variety over Q)

Main question Describe:
V (Q) =set of rational solutions (xi ∈ Q)
V (Z) =set of integer solutions (xi ∈ Z)

Example: Is V (Q) infinite (or empty)?
Exercise (Fermat’s Last Theorem):
xn + yn = zn has no Z-solutions with xyz ̸= 0, x, y, z ∈ Z for n > 2
⇔ V : xn + yn = 1 has V (Q) ⊆ {(±1, 0), (0,±1)} for n > 2
Generally, simplest case is 1 equation in 2 variables

C : f(x, y) = 0 deg f = d
Plane curve
If C is non-singular projective, then C(C)=compact Riemann surface of genus g = (d−1)(d−2)

2

When can C(Q) be infinite?
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g = 0: Either C(Q) = ∅ or C(Q) infinite. ∃ algorithm to determine which
g = 1: Unsolved problem (BSD conjecture)
g ≥ 2: Falting’s Theorem (= Mordell Conjecture) (very hard) C(Q) always finite

g = 0
C line, ax+ by = c, C(Q) infinite
or
C conic, f(x, y) = 0, deg f = 2, (circle, parabola, hyperbola)

E.g.: C : x2 + y2 = 1
What is C(Q)?
Take Q = (−1, 0) and line lt through Q of slope t ∈ Q

Claim: 2nd point of intersection Pt is in C(Q)

Proof

{
x2 + y2 = 1

y = t(x+ 1)

⇔ x2 + t2(x+ 1)2 − 1 = 0 quadratic equation on x with Q-coeff., 1st root x = −1 rational

⇒ 2nd root rational

Explicitly,
(t2 + 1)x2 + 2t2x+ (t2 − 1) = 0

has roots

x = −1 y = 0

x =
1− t2

1 + t2
y = t(

1− t2

1 + t2
+ 1) =

2t

1 + t2

i.e.

Pt =

(
1− t2

1 + t2
,

2t

1 + t2

)
Conversely, P ∈ C(Q)⇒ line PQ has slope ∈ Q
⇒ P = Pt for some t ∈ Q

Q∪{∞} ← 1 : 1→ C(Q)

t 7→
(
1− t2

1 + t2
,

2t

1 + t2

)
y

x+ 1
← [ (x, y)

(in fact, C ∼=P1
Q)

Corollary
Every Pythagorean triples a2 + b2 = c2, a, b, c ∈ N, are of the form

(m2 − n2)2 + (2mn)2 = (m2 + n2)2

(Put t = m/n)
Remark:
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C : f(x, y) any conic
Either C(Q) ̸= ∅ ⇒ C(Q) infinite, C ∼=P1

Q (same proof)
or C(Q) = ∅ can happen
E.g. x2 + y2 = −1, C(R) = ∅
E.g.2 x2 + y2 = 3 no solution mod 3 (C(Q3) = ∅)

Theorem 1.0.1 (Hasse-Minkowski)
C conic, then

C(Q) ̸= ∅ ⇔ C(R) ̸= ∅, C(Qp) ̸= ∅ ∀p

In fact, write C : ax2 + by2 = c (easy), a, b, c ∈ Z Then enough to check R,Qp for p|2abc
Solves g = 0 completely

g = 1: Elliptic curves - can be represented as a plane cubic

E : y2 = x3 +Ax+B (A,B ∈ Q)

use Riemann-Roch Theorem:
If P,Q ∈ E(Q), then line PQ intersect E in third point R ∈ E(Q)

Theorem 1.0.2
Define operation + as follows:
P +Q = R′ = R reflected in x-axis
This makes E(Q) into an abelian group

This gives elliptic curves a very rich structure

Theorem 1.0.3 (Mordell-Weil)
E(Q) is a finitely generated abelian group

Our course:

• Geometry of ECs, group law

• Structure of E(C), E(Fq), E(Qp)

• Mordell-Weil Theorem

• State Birch-Swinnerton-Dyer Conjecture and related bits
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Chapter 2

Curves

2.1 Background

k algebraically closed (e.g. k = C)

Definition 2.1.1
Affine space An = Ank = {(a1, . . . , an)|ai ∈ k}
Projective space Pn = Pnk = {(a0 : a1 : · · · : an)|ai ∈ k, not all 0}/ ∼
where (a0 : · · · : an) ∼ (αa0 : · · · : αan) ∀α ∈ k×

Pn covered by An’s:

An ↪→ Pn

(a1, . . . , an) 7→ [1 : a1 : · · · : an]

This gives a copy of An in Pn, say An0 .
Similarly, get An0 ,An1 , . . . ,Ann ↪→Pn
by (a1, . . . , an) 7→ [a0 : · · · : 1 : · · · : an] (1 at j-th place)
If P ∈ Pn, say P = (a0 : · · · : aj : · · · : an) with not all an = 0, say aj ̸= 0, then
P = (a0 : . . . : an) = (a0aj : · · · : ajaj : · · · : anaj ) ∈ Anj
So Pn = An0 ∪ · · · ∪ Ann (this is called affine charts)

Example 2.1.2
Projective line P1

P1 = {(x : 1)} ∪ {(1 : 0)} = A1
1 ∪{∞ point at infinity}

= {(0 : 1)} ∪ {(1 : y)} = {0} ∪ A1
0

Algebraic subsets are ∅,P1, finite subsets {b1, . . . , bk} zero set of f(x, y) =
∏
(x− biy)

Definition 2.1.3
An (affine) algebraic set V ⊆ An is the set of all solutions to a system of polynomial equations in
x1, . . . , xn

V :


f1(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

A (projective) algebraic set V ⊆ Pn is the set of all solutions to a system of homogeneous polynomial
equations in x0, . . . , xn
Exercise: Equivalent to V ∩ Anj affine algebraic set ∀j
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Definition 2.1.4
A (projecitve) curve is an infinite algebraic set C ⊆ Pn s.t. Y ( C algebraic ⇒ Y finite
(irreducible projective variety of dimension 1)

E.g. P1 is a curve

A curve C ⊆ P2 is plane curve. These are given by C : f(x, y, z) = 0, f ∈ k[x, y, z] homog. irred.

E.g. xy − z2 = 0
xy = 1 in z = 1 chart
x = z2 in y = 1 chart
y = z2 in x = 1 chart

We often write e.g. C : xy = 1 ⊆ P2 meaning associated projective curve xy = z2

Algebraic sets in P2 are ∅,P2 finite unions of points and plane curves

2.1.1 Rational functions

Definition 2.1.5
A rational function on An is f ∈ k(x1, . . . , xn) =: k(An)
A rational function on Pn is f = 0 or

f =
g(x0, . . . , xn)

h(x0, . . . , xn)

where g, h homog. polynomials of the same degree.

They form a field k(Pn); and in fact, k(Pn) = k(Anj ) ∀ chart

Example k(P1) ∋ y
x+y ↔

1
x+1 ∈ k(A

1) via,
from left to right, y 7→ 1, and from right to left, homogenize.

Definition 2.1.6
C ⊆ Pn curve, f = g/h ∈ k(Pn), h ̸= 0 on C
The restriction of f to C

f : C \ {finite set} → k

(not defined where h = 0) is a rational function on C. They form a field k(C)

Example 2.1.7

• C ⊆ P2 plane curve f(x, y) = 0 Then k(C) = ff(k[x, y]/(f))

• C = P1 ↪→P2

Then k(C) = ff(k[x, y]/(y)) = ff(k[x]) = k(x)

• C : y2 = x3 + 1. k(C) = ff(k[x, y]/y2 − x3 − 1)∼= k(x,
√
x3 + 1)

Fact: k(C) is a finitely generated field of transcendence degree 1 over k; so ∀f ∈ k(C) \ k

k
transc.
↪→ k(f)∼= k(t)

finite
↪→ k(C)

Fact: (Not hard) Conversely, K f.g. field of tr.deg. 1 over k ⇒ ∃C s.t. k(C)∼=K
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Definition 2.1.8
C ⊆ Pn, D ⊆ Pm curves. A rational map ϕ : C 99K D is one given by rational functions

ϕ(P ) = (f0(P ) : · · · : fm(P ))

where fi ∈ k(C), not all 0.
Note: This may not be defined on finitely many points.

Definition 2.1.9
We say ϕ is defined at P ∈ C if f0g, . . . , fmg defined at P for some g ∈ k(C)×
If ϕ is defined everywhere, ϕ is a morphism

A non-constant ϕ : C → D induces

ϕ∗ : k(D) ↪→ k(C)

f 7→ ϕ∗(f) := f ◦ ϕ

injective (since fields) of finite index (tr.deg 1)

Definition 2.1.10
Degree of morphism is deg ϕ = [k(C) : ϕ∗k(D)]

Conversely, any injection k(D) ↪→ k(C) comes from a unique rational map C → D

Example 2.1.11
C : x2 + y2 = 1, D : y = 0, ϕ(x, y) := (x, 0)
k(C)∼= k(x,

√
1− x2), k(D)∼= k(x)

So induces ϕ∗x = x
deg ϕ = [k(x,

√
1− x2) : k(x)] = 2

Exercise: { Rational maps C → P1 } = k(C)

2.1.2 Smoothness

Definition 2.1.12
Affine curve C (defined by f1, . . . , fm) is non-singular at P = (a1, . . . , an) ∈ C if the matrix A =(
∂fi
∂xj

(P )
)
i,j

has rank n− 1 (note the rank is always ≤ n− 1)

Formal derivative
∂(cxiyj · · · )

∂x
:= cixi−1yj · · ·+ linearity

with usual rules, product rule, chain rule, etc.

Definition 2.1.13
Projective curve C ⊆ Pn is non-singular at P if C ∩ Anj non-singular at P for some (equivalently, for
any) chart containing P

Example 2.1.14
Plane curve C : f(x, y) = 0, f irreducible, singular at P = (a, b) ⇔ ∂f

∂x (P ) =
∂f
∂y (P ) = 0

We can think in terms of picture:
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Example 2.1.15
f = y2 − x3 = 0
∂f
∂x = −3x2
∂f
∂y = 2y
Both 0 at (0, 0) and not both 0 otherwise, so f has unique singular point (0, 0)

Definition 2.1.16
C non-singular (or smooth) if it is non-singular at every point

Exercise: (char k ̸= 2) Affine plane curve y2 = f(x) is non-singular ⇔ f(x) has non multiple roots

Fact: Non-singular P ∈ C defines a discrete valuation (“order of vanishing at P”)

vp : k(C)
× � Z

f 7→ vp(f) =


n > 0 f has zero of order n at P

−n < 0 f has pole of order n at P

0 f(P ) ∈ k×

∞ f ≡ 0

vp(fg) = vp(f) + vp(g) vp(f/g) = vp(f)− vp(g)
vp(f ± g) ≥ min(vp(f), vp(g))

Example 2.1.17
C = P1, k(C) = k(X) ∋ f = g

h =
∏

(x−ai)ni∏
(x−bi)mi

vaif = ni, vbif = −mi, v∞f = deg h− deg g, vP f = 0 otherwise

Definition 2.1.18
f is a uniformiser at P if vP f = 1
One of coordinate functions xj − aj is always a uniformiser at P = (a1, . . . , an)

Example 2.1.19
C : x2 + y2 = 1, P = (a, b) ∈ C
P ̸= (±1, 0) x− a uniformiser

P = (1, 0) y uniformiser, x− 1 = y2

x+1 (has valuation 2)

Lemma 2.1.20
If ϕ : C → C ′ rational map, C non-singular, then ϕ is a morphism

Proof
ϕ = (f0 : · · · : fn), P ∈ C
Say vP f0 < vP fj , j ̸= 0
Then

ϕ =

(
1 :

f1
f0

: · · · : fn
f0︸ ︷︷ ︸

vP≥0

)

defined at P

Corollary 2.1.21
If ϕ : C → C ′ has degree 1, C,C ′ non-singular, then ϕ is an isomorphism
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Proof
ϕ induces ϕ∗ : k(C ′)

∼−→ k(C)
∃ψ rational map C ′ → C s.t. ϕψ = id = ψϕ ⇒ ϕ, ψ morphism by the lemma.

Summary: There is an equivalence of categories

non-singular curves/k → f.g. fields K/k of tr.deg. 1
(rational maps =) morphisms ϕ → fields inclusions

C 7→ k(C)
discrete valuations on K

v : K×�Z s.t.
v(k×) = 0

 ← [ K

2.1.3 Divisor

All curves non-singular over k = k

Definition 2.1.22
A divisor D on C is a formal finite linear combination of points

D =
∑
i

niPi ni ∈ Z, Pi ∈ C

Div(C) = {divisors of C}

this is an abelian group.

degree of divisor : deg(D) =
∑
i

ni ∈ Z

Divisor of degree zero forms Div0C a subgroup.

Non-constant ϕ : C → C ′ induces homomorphisms

ϕ∗ : DivC → DivC ′ pushforward

(Q) 7→ (P ), P = ϕ(Q)

ϕ∗ : DivC ′ → DivC pullback

(P ) 7→
∑

ϕ(Q)=P

eQ(Q)

where
eQ = ramification index := vQ(ϕ

∗tP ) ≥ 1

tP is uniformiser at P

Fact: deg ϕ∗P = deg ϕ always (in particular, ϕ surjective)

Example 2.1.23
(see picture)
ϕ∗(a) = (a,

√
1− a) + (a,−

√
1− a) a ̸= ±1

ϕ∗(1) = 2(1, 0) ( ϕ∗(x− 1) = x− 1 has valuation 2 )
ϕ∗(−1) = 2(−1, 0)
We say that (1,0), (-1,0) are ramified (i.e. eQ > 1)
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Remark.
k(C) Q1

AA
AA

AA
AA

Q2 · · ·

~~
~~

~~
~~

~

k(C ′)
?�
d

OO

P

∑
eQ = d

(Note residue field k = k =⇒ f = 1 always) Compare with algebraic number theory ))

K Q1

BB
BB

BB
BB

Q2 · · ·

||
||

||
||

|

Q
?�
d

OO

p

∑
eifi = d

2.1.4 Frobenius map

If char k = p then a 7→ ap is a bijection (in fact, isomorphism) k → k
0 = xp − b = (x− p

√
b)p has one solution in k

So

ϕ : P1 → P1

(x : y) 7→ (xp : yp)

is a bijection on points
But k(xp) ↪→ k(x) has index p, so degϕ = p.
Every point is ramified, eQ = p ∀Q ∈ P1

Can do this for every curve:

Definition 2.1.24

C :


f1 = 0
...

fm = 0

⊆ Pn curve

C(p) :


f
(p)
1 = 0
...

f
(p)
m = 0

f (p) := f with all coefficients raised to p-th powers
The p-th power Frobenius map is:

Frobp : C → C(p)

(x0 : · · · : xn) 7→ (xp0 : · · · : x
p
n)

Example 2.1.25
C : y2 = x3 +Ax+B,A,B ∈ k
(y2)p = (x3 +Ax+B)p

(yp)2 = (xp)3 +Ap(xp) +Bp ⇒ (xp, yp) ∈ C(p)

It is a bijection on points, eQ = p ∀Q ∈ C (some uniformiser computation)

Alternatively, by definition of eQ : Q = a ∈ A1, P = ap,
ϕ∗(x− ap) = xp − ap = (x− a)p has valuation p at Q

So deg Frobp = p
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Remark. k ⊇ Fp
Say fi ∈ Fp[x1, . . . , xn], i.e. C is defined over Fp. Then

(1) C = C(p) (a ∈ Fp ⇔ ap = a)

(2) C(Fp) := {(a1, . . . , an) ∈ C|ai ∈ Fp}
= fixed points of Frobp : C → C
= fixed points of (Frobp)

n

This leads to Lefschetz trace formula, etale cohomology, Weil conjecture

Lemma 2.1.26
K f.g. field of tr.deg.1 over k, char k = p, K ′ := K({ p

√
f}f∈K). Then

(1) [K ′ : K] = p

(2) K ′ = K( p
√
f) for any f ∈ K with p

√
f /∈ K

Proof

(1) K = k(C),K ′ = k(C(1/p)), C(1/p) Frobp−−−→ C has degree p, [K ′ : K] = p

(2)

K ′

Tower law⇒ 1

ww
ww

ww
ww

w

p by (1)K( p
√
f)

p GG
GG

GG
GG

G

K

Definition 2.1.27
Finite field extension K ′/K is separable if ∀α ∈ K ′ is a simple root of an irreducible polynomial
f(x) ∈ K[x]
Inseparable otherwise.

Fact:

(1) char K = 0 ⇒ every K ′/K is separable

(2) char K = p ⇒ K( p
√
α), α ∈ K, p

√
α /∈ K is inseparable.

Every F/K factors
K ⊆

separabe
K ′ ⊆

purely inseparable
F

purely inseparable means that the (inseparable) extension is obtained by successively adjoining
p-th roots
separable degree degs F/K := [K ′ : K]

(3) F/M/K finite. Then degs F/K = degs F/M degsM/K
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(4) F/K separable ⇔ F = K(α), α root of some irred. polyn. f(x) ∈ K[x] with f ′(α) =
0(⇔ f ′ ̸≡ 0)

For ϕ : C → C ′ non-constant, we say ϕ is separable if k(C)/ϕ∗k(C ′) is.

Corollary 2.1.28

(1) Every ϕ factors C
(Frobp)n−−−−−→ C(pn) ϕ0−→ C ′ with ϕ0 separable

(2) Every C admits separable ϕ : C�P1 (i.e. k(C) ⊇ k(t) separable extension)

(3) If ϕ : C�C ′ separable, only finitely many points are ramified (⇒ In general, If ϕ : C�C ′

arbitrary, all but finitely many P ∈ C ′ have exactly degs ϕ)

Proof

(1) Fact (2) + Lemma

(2) Let f = tp ∈ k(C) be a unit at (some) P ∈ C; check that f : C → P1 is separable

(3) May assume C ′ = P1 by Fact (2).
Write k(C) = k(t)(α), α root of irred. polyn. f ∈ k[t]
Then {ramified points} ⊆ {those where f ′(α) = 0, l ̸= 0}

2.1.5 Divisors of functions

Definition 2.1.29
For f ∈ k(C)× define divisor of f

div(f) = (f) :=
∑
P∈C

vP (f) · (P )

= f∗((0))− f∗((∞))

Remark. Has degree deg f − deg f = 0

Definition 2.1.30
D,D′ ∈ Div(C) are linearly equivalent, write D′ ∼ D, if D −D′ = div(f) for some f ∈ k(C)×
D ∼ 0 are called principal divisors

Definition 2.1.31

Pic0(C) := Div0(C)/ ∼
Pic(C) := Div(C)/ ∼ ∼= Pic0(C)× Z

In algebraic number theory

points ↔ prime ideals
Div(C) ↔ group of fractional ideals
Principal ↔ Principal ideals
Pic(C) ↔ Class group
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Example 2.1.32
C = P1. For P,Q ∈ A1 ⊆ P1

(P ) ∼ (Q) [ (P )− (Q) = div x−P
x−Q ]

⇒ Pic0(P1) = {0} and deg define isomorphism Pic(P1)∼=Z

Conversely, if C is a curve on which (P ) ∼ (Q) for some P,Q ∈ C then C ∼=P1

Proof: Take f ∈ k(C)× s.t. div(f) = (P )− (Q). Then f : C → P1 has only one pole at Q and so has
degree 1⇒ C ∼=P1

2.1.6 Differentials

Definition 2.1.33
A (rational) differential on a non-singular curve C is a formal finite sum

ω =
∑
i

fi dgi, fi, gi ∈ k(C)

subject to relations

d(g1g2) = g1dg2 + g2dg1

d(g1 + g2) = dg1 + dg2

da = 0 ∀a ∈ k ⊆ k(C)

Example 2.1.34
(char k ̸= 2) C : x2 + y2 = 1
we have, for example, d(x2y) = x2 dy + 2xy dx
Generally, any f dg = f · gx′ · dx+ f · gy ′ · dy
⇒ can express any w as f1 dx+ f2 dy

Also x2 + y2 = 1
⇒ 2x dx+ 2y dy = 0
⇒ dy = −(x/y)dx
⇒ ∀ω ∃ !f ∈ k(C) s.t. ω = f dx

⇒ {differentials on C} = k(C) · dx

Similarly, for any C, we have the 1-dimensional k(C)-vector space

{differentials on C} = k(C) · df

For any f s.t. K(C)/k(f) is separable, let ω be a differential on C. For P ∈ C, write

ω = f · dtP , tP uniformiser at P

and define

vP (ω) := vP (f) (independent of the choice of tP )

div(ω) :=
∑
P

vP (ω) (P ) (finite sum)

Because any w,w′ differ by a function,

ω = f · ω′ ⇒ div(ω) = div(ω′) + div(f) ∼ div(ω′)

So divisors of differential forms span a class K ∈ Pic(C), the canonical class

ω regular at P if vP (w) ≥ 0
ω regular if all vP (w) ≥ 0 (i.e. div(w) ≥ 0)
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2.1.7 Riemann-Roch

Definition 2.1.35
The complete linear system of a divisor D

L(D) := {f ∈ k(C)|div(f) +D ≥ 0} k-vector space

↔ {D′ ∈ Div(C) | D′ ≥ 0 and D ∼ D′}

(via f 7→ D′ = D + div(f))

Remark. D ∼ D′ ⇒ L(D)∼=L(D′)

Example 2.1.36
L(0) = {f ∈ k(C)|div(f) ≥ 0} functions with no poles

= k (f non-constant ⇒ f : C�P1 hits ∞)

Example 2.1.37
L(3(P )) = {f ∈ k(C)|div(f) ≥ −3(P )} functions with pole of order ≤ 3 at P and no other poles

(Generally, “L(D) = functions with a pole at most at D”)

Exercise:

(1) L(D) = 0 when degD < 0 (equivalently, when degD = 0 and D � 0)

(2) dimk L(D + P ) ≤ dimk L(D) + 1 (⇒ dimk L(D) <∞ ∀D )

Definition 2.1.38
The genus of C is

g(C) := dimk L(K) = dimk L(div(ω)) for any ω ̸= 0

Fact Non-constant ϕ : C → C ′ induces pullback map on differential forms:

ω = fdg  ϕ∗ω := (ϕ∗f)d(ϕ∗g)

and therefore
ϕ∗ : L(KC′)→ L(KC)

Not hard to see that ϕ∗ injective ⇔ ϕ separable
and ϕ∗ = 0 ⇔ ϕ inseparable

Corollary 2.1.39
g(C) ≥ g(C ′) always (i.e. genus goes down under non-constant maps)

Remark. A non-singular plane curve C ⊆ P2, C : f(x, y) = 0 has genus

g =
(d− 1)(d− 2)

2
d = deg f

= 0 for linear and conics

= 1 for cubics

= 3 for quartics

In particular, genus 2 curves (they exist) cannot embedded in P2

Theorem 2.1.40 (Riemann-Roch)
C non-singular curve. For every D ∈ Div(C)

dimL(D)− dimL(K−D) = degD − g + 1

Corollary 2.1.41
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• degK = 2g − 2 (Proof: Take D = K)

• If degD > 2g − 2, then dimL(D) = degD − g + 1 (Proof: Since deg(K−D) < 0)

Lemma 2.1.42 (Classification of Curve of Genus 0)
A non-singular curve C has genus 0 ⇔ C ∼=P1

Proof

⇐: P1 genus 0: uniformisers

ta = x− a, a ∈ A1

t∞ =
1

x

dx = d(x− a) valuation 0 at a ∈ A1

dx = d

(
1

t∞

)
= − 1

t2∞
· dt∞ valuation −2 at ∞

⇒ div(dx) = −2(∞),deg = −2 = 2g(P1)− 2 (by Corollary)
⇒ g(P1) = 0

⇒: Suppose a curve C has genus 0. Take P ∈ C,D = (P )
degD > 2g − 2 = −2 ⇒ dimL((P )) = 1− 0 + 1 = 2
⇒ L((P )) ) L(0) = k ⇒ ∃f ∈ k(C) with a simple pole at P and no other poles
div(f) = −(P ) + (Q) for some Q ∈ C
⇒ f : C

∼−→ P1 is an isom.

Corollary 2.1.43
k algebraically closed, every conic is isomorphic to P1

2.2 Cubics

Suppose char k ̸= 2, 3, C ⊆ P2 non-singular of the form

C : y2 = x3 + ax+ b a, b ∈ k
= (x− α1)(x− α2)(x− α3) αi ∈ k

C ∩ A2 non-singular ⇔ αi are distinct

(see picture for the 3 different cases)

Exercise: When αi not distinct, C is singular, k(C)∼= k(P1) (C has “geometric genus 0”)
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To get a morphism
P1 → C
t 7→ P

of degree 1 (see picture)

Recall
P2

(x:y:z)
= A2

z=1
(x:y:1)

∪ P1
z=0

(x:y:0)

← line at ∞

C ⊆ P2 : y2z = x3 + axz2 + bz3

C ∩ P1
z=0︸ ︷︷ ︸

has unqiue pt.
O = (0 : 1 : 0)

point at infinity

: 0 = x3 + 0 + 0 ⇒


x = 0

z = 0

y = 1

In the y = 1 chart
C : z = x3 + axz2 + bz3

O = (0, 0) (see picture)
g(x, z) = z − x3 − axz2 − bz3
dg
dz

∣∣∣
(0,0)

= 1 ̸= 0

⇒ C non-singular at 0

So, C ⊆ P2 non-singular ⇔ C ∩ A2
z=1 non singular ⇔ αi distinct

Differentials:
e.g. div(dx) = (P1) + (P2) + (P3)− 3(0) (exercise: check)
this has degree 0 = 2g − 2 (by Corollary of Riemann-Roch)

⇒ C has genus 1 (= (3−1)(3−2)
2 as expected)

div(y) = (P1) + (P2) + (P3) + λ(0) some λ
this has degree 0 ⇒ λ = −3
⇒ div(dxy ) = 0 since w = dx

y has no zeroes, no poles

In fact, K = ⟨dxy ⟩ as it is 1-dimensional over k by definition of genus.

Definition 2.2.1
An elliptic curve , (E,O), is a non-singular projective curve E of genus 1 with a marked point O

Example 2.2.2
(char k ̸= 2, 3)

y2 = x3 + ax+ b O = (0 : 1 : 0)

is an elliptic curve in (simplified) Weierstrass form (if ∆E = 16∆RHS = −16(4a3 + 27b2) ̸= 0)

In any characteristic, have (generalised) Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(char k ̸= 2, 3 ⇒ complete the square in LHS, complete the cube in RHS, then we get simplified
form)

Theorem 2.2.3
Every elliptic curve is isomorphic to one in Weierstrass form

15



Proof
(E,O) elliptic curve.

dimL(n(0)) = n− 1 + 1 = n for n ≥ 1

L(1(0)) = k = ⟨1⟩ constant
L(2(0)) = ⟨1, x⟩ where x ∈ k(C) with double pole at 0

L(3(0)) = ⟨1, x, y⟩ where y ∈ k(C)with triple pole at 0

Note that y /∈ k(x) (elements of k(x) has even order)

L(4(0)) = ⟨1, x, y, x2⟩
L(5(0)) = ⟨1, x, y, x2, xy⟩

L(6(0))︸ ︷︷ ︸
dim=6

∋ 1, x, y, x2, xy,

pole of order 6 at O︷ ︸︸ ︷
x3, y2︸ ︷︷ ︸

7 functions

⇒ must have a linear relation, involving both x3, y2

αy2︸︷︷︸
̸=0

+ βx3︸︷︷︸
̸=0

+ · · · = 0

Rescaling x, y may make α = 1, β = −1

y2 − x3 + · · · = 0

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 for some ai ∈ k

Let C ⊆ P2
x,y,z by a curve given by this equation

k(C) = ff(
k[x, y]

y2 + · · · = x3 + · · ·
) ↪→ k(E)

x 7→ x

y 7→ y

[k(x, y) : k(x)] = 2
This defines a map E → C
x : E → P1 has x∗((∞)) = 2(O) (as O 7→ ∞), so this map has degree 2

k(x) � t

2 &&NNNNNNNNNNN
� � 2 // k(E)

k(x, y) = k(C)
* 


∼=

88ppppppppppp

the lower left map is non-trivial, y ∈ k(x) and its degree ≤ 2 by equation y2 + · · · = x3 + · · · )))
⇒ k(C) ↪→ k(E) is isomorphism, i.e. E → C has degree 1

If C is singular, then k(C)∼= k(P1), and then E∼=P1 #
So C is non-singular

Corollary 2.2.4
Every elliptic curve admits a degree 2 map to P1, namely E

x−→ P1

Such curves (of any genus) are called hyperelliptic

g = 1 ⇒ hyperelliptic
g = 2 ⇒ hyperelliptic (exercise)
g = 3 ⇒ Either a plane quartic or hyperelliptic, but not both

16



Remark. If E,E′ in Weierstrass form and E∼=E′ then

LE(2(O)) ∼= LE′(2(O))
LE(3(O)) ∼= LE′(3(O))

(these are k-vector spaces), so

xE′ = u2x+ r u ∈ k×

yE′ = u3y + sx+ t r, s, t ∈ k

i.e. Weierstrass form is unique up to such transformations

Suppose char k ̸= 2, 3:
• Simplified Weierstrass form unique up to

xE′ = u2x u ∈ k×

yE′ = u3y

and

E : y2 = x3 + ax+ b ∼= E′ : (y′)2 = (x′)3 + a′x′ + b′

⇔

{
a′ = u4a

b′ = u6b

(∆E′ = −16(4a′3 + 27b′2) = u12∆E)

Definition 2.2.5
j-invariant j(E) := 1728 (−4a)3

∆

Example 2.2.6
• y2 = x3 + ax has j = 1728
• y2 = x3 + b has j = 0

Proposition 2.2.7

(1) E∼=E′ ⇔ j(E) = j(E′)

(2) For any j ∈ k ∃E s.t. j(E) = j, hence

{elliptic curves (up to isom.)/k}
1:1 map
j(E)←→ k

Proof

(1)

a′ = u4a
b′ = u6b

⇔ 4

√
a′

a
=

6

√
b′

b

⇔
(
b′

b

)2

=

(
a′

a

)3

⇔ 4a3 + 27b2

a3
=

4(a′)3 + 27(b′)2

(a′)3

⇔ j(E) = j(E′)

Do d = 0, b = 0 separately (j = 0, 1728)

(2) y2 + xy = x3 − 36
j−1728x−

1
j−1728 works for j ̸= 0, 1728

17



Corollary 2.2.8
The automorphism group Aut(E) = { morphisms ϕ : E → E s.t. ϕ(O) = O} is

• Z /2Z for y2 = x3 + ax+ b, a, b ̸= 0 (j ̸= 0, 1728)

• Z /4Z for y2 = x3 + ax (j = 1728)

• Z /6Z for y2 = x3 + b (j = 0)

Proof

Aut(E) =

{
u ∈ k×

∣∣∣ u4a = a
u6b = b

}

=


{±1} ab ̸= 0

⟨i⟩ b = 0

⟨ζ6⟩ a = 0

For most elliptic curves, (x, y)→ (x,−y) is the only automorphism.

Remark. If char k = 2, 3

• ∆, j complicated polynomial, rational function of a1, . . . , a6

• ai change ai′ = uiai + · · ·
• Proposition still holds

• |Aut(E)| ≤ 24

2.2.1 Group Law

Over C: E(C)∼=C /lattice, group law = addition

Recall Pic0(E) =
divisors of deg 0

divisors of functions
, e.g. Pic0 P1 = {0}

E elliptic curve

Theorem 2.2.9
The following map is a bijection

E → Pic0(E)

P 7→ (P )− (O)

Proof
Injective ↪→:

If (P )− (O) ∼ (Q)− (O), then (P ) ∼ (Q) ⇒ E∼=P1 # unless P = Q

Surjective �:

Take D ∈ Div0(E). By Riemann-Roch,
dimL(D + (O)︸ ︷︷ ︸

deg=1

) = 1

⇒ ∃f s.t. div(f) ≥ −D − (O)︸ ︷︷ ︸
deg=−1

⇒ div(f) = −D − (O) + (P ) for some P ∈ E
⇒ D ∼ (P )− (O)

18



Corollary 2.2.10
E has a structure of an abelian group

Proof
Pic0(E) has structure of abelian group, apply theorem.

E : y2 = x3 + ax+ b

Identity = O because (O)− (O) = 0 ∈ Pic0(E)

Inverse of P = (x1, y1) is P
′ = (x1,−y1)

div(x− x1) = (P ) + (P ′)− 2(O) ⇒ (P )− (O) ∼ −[(P ′)− (O)]

Addition P = (x1, y1), Q = (x2, y2), P ̸= −Q;P,Q ̸= 0
P +Q+R = 0 in E ⇔ P +Q = (−R)

Need function with

div(f) = (P )− (O) + (Q)− (O) + (R)− (O)
= (P ) + (Q) + (R)− 3(O)

(⇒ f ∈ L(3O) = ⟨1, x, y⟩)
So f = αy + βx+ γ, α ̸= 0
So f = 0 is an equation of a line passing through P and Q (tangent to P if P = Q) with R = third
point of intersection

Explicitly, solve {
y2 = x3 + ax+ b elliptic curve

y = κ(x− x1) + y1 line

with

κ = slope =

{
y2−y1
x2−x1 P ̸= Q
3x21+a
2y1

P = Q

(κx+ · · · )2 = x3 + ax+ b
x3 − κ2x2 + · · · = 0 and

∑
roots = κ2

⇒ 3rd root x, y defining R = (x, y) is{
x = κ2 − x1 − x2
y = κ(x− x1) + y1

Hence,
(x1, y1) + (x2, y2) = (κ2 − x1 − x2,−κ(x− x1)− y1)

Important: This shows (+some extra work when P = ±Q see Silverman Theorem III 3.6) that

inverse : E
i−→ E

addition : E × E µ−→ E

are morphisms, i.e. given by rational functions that are defined everywhere
That is, E is algebraic group (= group variety = group object in the category of varieties)

In particular, translation maps

τQ : E → E

P 7→ P +Q

are morphisms. (Proof: This is just composition µ ◦ (id, Q))
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Corollary 2.2.11

{
isomorphisms

E → E as a curve

}
∼= {translations}oAut(E)

∼= E o finite groups

Iso(C,C) ∼=


PGL2(k) g = 0

E o finite group g = 1

finite group g ≥ 2

Exercise: The only (affine or projective) curves that are algebraic groups are

• Additive group Ga = P1 \{∞} = (k,+)

• Multiplicative group Gm = P1 \{0,∞} = (k×,×)

• Elliptic curves (the only projective algebraic groups in dimension 1)

Remark. genus(C)=g ⇒ Pic0(C) has a structure of a g-dimensional abelian variety (i.e. projective
algebraic group, by definition) the Jacobian of C, denoted Jac(C)

Fixing P0 ∈ C, define the Abel-Jacobi map

C → Jac(C)

P 7→ (P )− (P0)

injective when g > 0, ∼= when g = 1. Every D ∈ Pic0(C) is ∼ (P1) + · · · (Pg)− g(P0), usually unique
such.

2.2.2 Isogenies

Definition 2.2.12
An isogeny between elliptic curves is a morphism ϕ : E → E′ s.t. ϕ(O) = O

Example 2.2.13

[0] : E → E zero isogeny

P 7→ O

we let deg[0] := 0, so deg(ϕ ◦ ψ) = deg ϕdegψ for all isogenies
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Example 2.2.14
Elements of Aut(E) are isogenies (of degree 1), e.g.

[1] : E → E

P 7→ P

[−1] : E → E

P 7→ −P

Example 2.2.15
Multiplication-by-m maps

[m] : E → E

P 7→ P + · · ·+ P︸ ︷︷ ︸
m times

(m > 0)

P 7→ (−P ) + · · · (−P )︸ ︷︷ ︸
m times

(m < 0)

Example 2.2.16
([2] when char k ̸= 2, 3)
E : y2 = x3 + ax+ b

[2] : E → E

P = (x, y) 7→ P + P = (κ2 − 2x,−κ(κ2 − 2x− x)− y) (κ =
3x2 + a

2y
)

=

(
1
2(x

2 − a)2 − 2bx

x3 + ax+ b︸ ︷︷ ︸
ψ(x)

, · · ·

)

This has degree 4:

E

x,deg=2
��

[2] // E

x,deg=2
��

P1
ψ(x) // P1

⇒ deg[2] = deg(ψ : P1 → P1) = max(deg(numerator),deg(denominator)) = 4

E.g.: [2]∗(O) = (O) + (T1) + (T2) + (T3)

Corollary 2.2.17
[m] ̸= [0] 0 ̸= m ∈ Z

Proof
In char k ̸= 2, 3:
[2] ̸= [0]
[n] ̸= [0] for n odd since [n]T1 = T1
[mn] = [m] ◦ [n]

Theorem 2.2.18
An isogeny ϕ : E → E′ is a group homomorphism.

Proof
ϕ = [0] is a homomorphism, so assume ϕ is non-constant
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Then recall: ϕ induces

ϕ∗ : Div(E) → Div(E′)

(Q) 7→ (ϕ(Q))

ϕ∗ : Div(E′) → Div(E)

(P ) 7→
∑

ϕ(Q)=P

eQ(Q)

Fact: (For all curves) Both map principal divisors to principal divisors:

ϕ∗(div(f)) = div(ϕ∗f)

ϕ∗(div(f)) = div(N(f)), N(f) := Normk(E)/ϕ∗k(E2)(f)

Now P +Q = R on E ⇒ (P )− (O) + (Q)− (O) ∼ (R)− (O)
⇒ (by fact above) (ϕ(P ))− (O) + (ϕ(Q))− (O) ∼ (ϕ(R))− (O)
⇒ ϕ(P ) + ϕ(Q) = ϕ(R) in E′

Corollary 2.2.19

(1)
Hom(E1, E2) := { isogenies E1 → E2}

is a torsion-free abelian group (will see later that ∼=Zr, some r ≤ 4)

(2) End(E) := Hom(E,E) is a (not necessarily commutative) integral domain of characteristic 0,
Aut(E) = End(E)× its units

Proof

(1) ϕ+ ψ := composition E
∆−→ E × E (ϕ,ψ)−−−→ E × E µ−→ E

P 7→ (P, P ) 7→ (ϕ(P ), ψ(P ))
ϕ+ ψ =morphism

Homomorphisms between abelian groups are abelian groups:

mϕ = 0 ⇒ [m] ◦ ϕ = [0] ⇒ [m] = [0] or ϕ = 0

(2)
Z ↪→ End(E)
m 7→ [m]

injective ring hom ⇒ char. 0

ϕψ = [0] ⇒ ϕ = [0] or ψ = [0]

Most of the time End(E) = Z (only [m]’s)

Definition 2.2.20
We say E has complex multiplication if End(E) ) Z (this is very special)

Example 2.2.21
E : y2 = x3 + x over C has End(E)∼=Z[i]

[1] : (x, y) 7→ (x, y)

[i] : (x, y) 7→ (−x, iy)

[i]2 = [−1] ⇒ End(E) ⊇ Z[i]
(for ⊆, we will get from C)
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Example 2.2.22
E : y2 + y = x3 over F2 has End(E)∼=Z+Z i+ Z j + Z 1+i+j+k

2
where i2 = j2 = k2 = 1, ij = k, jk = i, ki = j

[i] :
x 7→ x+ 1
y 7→ y + x+ ζ

[j] :
x 7→ x+ ζ2

y 7→ y + ζx+ ζ
[k] :

x 7→ x+ ζ
y 7→ y + ζ2x+ ζ

[−1] : x 7→ x
y 7→ y + 1

Frob2 : (x 7→ x2, y 7→ y2) = [j] + [k], (Frobc)
2 = [−2] ⇒ [2] inseparable

2.2.3 Invariant Differential

Definition 2.2.23
A differential w ̸= 0 on E is an invariant differential if div(ω) = 0

Recall: g(C) = dimL(K) = 1
⇒ ∃ω with no poles, degK = 2g − 2 = 0
⇒ has no zeroes either
⇒ such ω exist up to ω 7→ αω (α ∈ k×)

Example 2.2.24
E : y2 = x3 + ax+ b ω = dx

y

For E in generalised Weierstrass form, ω = dx
2y+a1x+a3

Theorem 2.2.25

(1) τ∗Pω = ω ∀P ∈ E and ω invariant differential on E (invariant differential invariant under
translation)

(2) (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω ∀ϕ, ψ : E → E′ isogenies, ω on E′

(3) (ϕχ)∗ω = χ∗(ϕ∗ω)

Proof
Omitted (see Silvermann III 5.1, 5.2)
Idea: (1) uses brute force, (2) can get from formal groups (see later), (3) is easy given (1),(2)

Remark. Recall: for ϕ : E → E′, non-zero isogeny
ϕ∗ω ̸= 0 ⇔ ϕ∗ : L(KE′)→ L(KE) ⇔ ϕ separable
So, in particular,

End(E) → k

ϕ 7→ α =
ϕ∗ω

ω
(α ∈ k s.t. ϕ∗ω = αω)

is a ring homomorphism, kernel = inseparable isogenies (but kernel=0 in char k=0)

Corollary 2.2.26
char k = 0 ⇒ End(E) is commutative

Corollary 2.2.27
[m]∗ω = mω

(Check m = 0, 1. Then done by induction, using (ϕ+ ψ)∗ω)

Corollary 2.2.28
For m ̸= 0, [m] separable ⇔ char k - m
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Example 2.2.29
E : y2 = x3 + x (over C)

[i] : (x, y) 7→ (−x, iy)

⇒ [i]∗
dx

y
=

d(−x)
iy

= i
dx

y

⇒ End(E) ↪→ C∪∣∣ ∪∣∣
Z[i] = Z[i]

Exercise: Describe End(E) = Z⟨1, i, j, 1+i+j+k2 ⟩ → F2 for E : y2 + y = x3 over F2

2.2.4 Galois Theory for Isogenies

If ϕ : E1 → E2 non-zero isogeny, then kerϕ = ϕ−1(O) is a finite subgroup

Example 2.2.30
E : y2 = (x− α1)(x− α2)(x− α3)
ker[2] = {O, T1, T2, T3}∼=Z /2Z×Z /2Z
Conversely, every finite subgroup Φ ⊆ E arises like this:

Theorem 2.2.31
ϕ : E1 → E2 separable isogeny, deg ϕ = n ̸= 0

(1) ϕ is unramified, i.e. |ϕ−1(P )| = n ∀P ∈ E2

(2) K1 = k(E1)/ϕ
∗k(E2) = K2 is Galois of degree n, and

ker(ϕ∗) ∼= Gal(K1/K2)

f 7→ τ∗P

(this implies Gal(K1/K2) abelian)

(3) If ψ : E1 → E3 another isogeny (may be inseparable) and kerψ ⊇ kerϕ then ∃ !χ s.t. ψ = χ ◦ ϕ

E1

ψ   B
BB

BB
BB

B
ϕ // E2

∃ !χ
��
E3

(4) Conversely, given any finite subgroup Φ ∈ E1, ∃ separable ϕ : E1 → some elliptic curve (denoted
E1/Φ) s.t. kerϕ = Φ

Proof

(1) By separability, ∃P̃ ∈ E2 with n preimages Q̃1, . . . , Q̃n by separability
If ϕ(Q) = P arbitrary, then

Q+ (Q̃1 − Q̃1)︸ ︷︷ ︸
T1

, Q+ (Q̃2 − Q̃1)︸ ︷︷ ︸
T2

, . . . , Q+ (Q̃n − Q̃1)︸ ︷︷ ︸
Tn

are n direct preimages of P
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(2) Φ := kerϕ = {T1, . . . , Tn} and

Claim: τ∗Ti : k(E2) ↪→ k(E1) preserves ϕ
∗(k(E2))

Proof of Claim:
τ∗Ti(ϕ

∗f) = ϕ∗f(·+ Ti) = f(ϕ(·+ Ti)) = f(ϕ(·) + ϕ(Ti)) = f(ϕ(·) +O) = f(ϕ(·)) = ϕ∗f �

⇒ |Aut(K1/K2)| ≥ n (τ∗Ti ∈ Aut(K1/K2) ∀i)
also [K1 : K2] = n, so by Galois theory, K1/K2 Galois and |Gal | = n

(3) K3 = ψ∗k(E3) ↪→K1

K3 is fixed by {τ∗P |P ∈ kerψ} ⊇ {τ∗P |P ∈ kerϕ} = Gal(K1/K2)
⇒ K3 ⊆ K2 ⇒ ∃ !χ : E2 → E3 inducing this inclusion
and ψ = χ ◦ ϕ, χ(O) = ψ(O) = O
⇒ χ isogeny

(4) τ∗P : k(E/Φ) ↪→K1 = k(E1), where P ∈ Φ
Let K := KΦ

1 . By Galois theory, K1/K is Galois of degree |Φ|
In particular, tr.degK = 1 ⇒ K = k(C) for some (unique up to isom) non-singular curve C,
get non-constant map

ϕ : E1 → C (this map is unramified, same argument as in (1))

Recall g(C) ≤ g(E1) = 1
If g(C) = 1 ⇒ done (define OC = ϕ(OE1))
If g(C) = 0, C ∼=P1, check the following:

div(ϕ∗dx) =
∑

ϕ(Q)=∞

eQ(Q)

(Note dx has divisor −2(∞)) all aQ < 0, and this divisor has degree < 0 #

2.2.5 Dual Isogeny

Definition 2.2.32

E1

ϕ
%%
E2

∃ !ϕ̂

ee

We say E1, E2 are isogeneous if ∃ isogeny ϕ ̸= 0 : E1 → E2

Proposition 2.2.33
ϕ : E1 → E2 isogeny of degree m ̸= 0
Then ∃ ! ϕ̂ : E2 → E1 (the dual isogeny) s.t. ϕ̂ϕ = [m]
(This proposition implies being isogeneous is an equivalence relation)

Proof
Uniqueness:

If ϕ̂ϕ = ψϕ = [m] ⇒ (ϕ̂− ψ)ϕ = [0] ⇒ (by ϕ ̸= 0) ϕ̂ = ψ

Existence:
Suffice to show for ϕ separable and Frobq
(1) ϕ separable: This implies #kerϕ = m, hence, ∀P ∈ kerϕ,mP = O ⇒ kerϕ ⊆ ker[m]

⇒ done by previous Theorem 2.2.31(3).
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(2) ϕ = Frobp, p = chark > 0,m = deg Frobp = p
w invariant differential on E
[p]∗w = pw = 0 ⇒ [p] inseparable ⇒ [p] = Frobp ◦ψ for some ψ

Theorem 2.2.34

(1) ϕ̂ϕ = [m] on E1, ϕϕ̂ = [m] on E2

(2) χ̂ ◦ ϕ = ϕ̂ ◦ χ̂ ∀χ : E2 → E3

(3) ϕ̂+ ψ = ϕ̂+ ψ̂ ∀ψ : E1 → E2

(4) [̂m] = [m] and deg[m] = m2 ∀m ∈ Z
(5) deg ϕ̂ = deg ϕ

(6)
̂̂
ϕ = ϕ

Proof
May assume all isogenies ̸= [0]

(1) ϕ̂ϕ = [m] by definition
ϕϕ̂ϕ = ϕ[m] = [m] ◦ ϕ ⇒ ϕϕ̂ = [m] (as ϕ ̸= 0)

(2) χϕϕ̂χ̂ = χ[deg ϕ]χ̂ = [deg ϕ][degχ] = [deg(χϕ)] = χϕχ̂ϕ

⇒ ϕ̂χ̂ = χ̂ϕ

(3) Omitted (Silverman III 6.2)

(4) By induction: Clearly true for m = −1, 0, 1
̂[m+ 1] = [̂m] + [̂1] by (3)

= [m] + [1] = [m+ 1] = [deg[m]] = [m][̂m] = [m2]
⇒ deg[m] = m2

(5) ϕ̂ϕ = [m] Take degrees

(6) ϕ̂ϕ = [deg ϕ] = [deg ϕ̂] = ϕ̂
̂̂
ϕ

⇒ ϕ =
̂̂
ϕ

Definition 2.2.35
A an abelian group. A quadratic form is a function d : A→ R s.t.

(1) d(−x) = dx ∀x ∈ A
(2) The pairing

⟨ , ⟩ : A×A → R
(ϕ, ψ) 7→ d(ϕ+ ψ)− dϕ− dψ

is Z-bilinear

Say d is positive-definite if d(x) ≥ 0, and d(x) = 0 ⇔ x = 0

Corollary 2.2.36
deg : Hom(E1, E2)→ Z is a positive definite quadratic form
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Proof
All clear except bilinearity. Using [·] : Z ↪→End(E1):

⟨ϕ, ψ⟩ = [deg(ϕ+ ψ)]− [deg ϕ]− [degψ]

= ̂(ϕ+ ψ) · (ϕ+ ψ)− ϕϕ̂− ψψ̂
= ϕ̂ψ + ψ̂ϕ bilinear

2.2.6 Torsion

Definition 2.2.37
The m-torsion group (or group of m-torsion points)

E[m] := ker[m] = {P |mP = 0} (m ≥ 1)

Corollary 2.2.38
If char k - m then E[m]∼=Z /mZ×Z /mZ

Proof
[m] separable ⇒ |E[m]| = m2 (because deg[m] = m2)

|E[m]| = m2

|E[d]| = d2 ∀d|m

}
⇒ E[m]∼=Z /mZ×Z /mZ

(Exercise: check this)

Remark. E[m]∼=E[pn1
1 ]× · · ·E[pnk

k ] if m = pn1
1 · · · p

nk
k prime decomposition

2.2.7 Tate module

l prime, l -char k

· · · [l]−→ E[l3]
[l]−→ E[l2]

[l]−→ E[l]
[l]
� 0

E[ln] = Z /ln Z×Z /ln Z

Definition 2.2.39
The l-adic Tate module is

TlE := lim←−
n≥1

E[ln]

= {(Pn)n≥1|Pn ∈ E[ln], [l]Pn = Pn−1} (by defn)

= Zl⊕Zl as an abelian group or Zl -module

Recall: The l-adic integer Zl := {(· · · , a2, a1)|an ∈ Z /ln Z, an+1 ≡ an mod ln}
This a ring (component-wise) and ⊇ Z = {(· · · , a, a)|a ∈ Z}

An isogeny ϕ : E1 → E2 induces linear maps

E1[l
n]→ E2[l

n]

so a Zl-linear map ϕl : TlE1 → TlE2 (think this as element of M2(Zl))
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Theorem 2.2.40
E1, E2 elliptic curves. Then

Hom(E1, E2)︸ ︷︷ ︸
torsion freeZ -modules

⊗Zl ↪→ Hom(TlE1, TlE2)

Proof
Let H = Hom(E1, E2) torsion-free abelian group.
Now suppose ϕ ∈ H ⊗ Zl s.t. ϕl = 0

ϕ = a1ψi + · · · atψt ai ∈ Zl, ψi ∈ H

M := ⟨ψ1, . . . , ψt⟩. Use the following Lemma 2.2.41, replace ψi by a basis of Mdiv, may assume
M =Mdiv

ϕ = a1ψ1 + · · · atψt ϕl = 0

for all n ̸= 1,
Since (a1 mod ln) ∈ Z s.t. its class in Z /ln Z is the same as that of a1

[a1 mod ln]ψ1 + · · · [at mod ln]ψt kills E[ln]

⇒ factoring isogenies theorem

= ln × (some elts of Mdiv =M)

= [lnb1]ψ1 + · · ·+ [lnbt]ψt for some bi ∈ Z

ψi basis of M ⇒ ai = lnbi ≡ 0 mod ln

True for all n ⇒ all ai = 0 ⇒ ϕ = 0

Lemma 2.2.41
If M ⊆ H = Hom(E1, E2) finitely generated subgroup, then

Mdiv = {ϕ ∈ H|mϕ ∈M for some m ≥ 1}

is finitely generated

Proof
Note M ⊗ R is a finite dimensional vector space, degree as quadratic form

Mdiv ↪→ M ⊗ R
open nbhd of 0: U = {ϕ ∈M ⊗ R |deg ϕ < 1} ↪→ M ⊗ R

Mdiv ∩ U = {0} (deg ≥ 1 for non-zero isogenies)
⇒ Mdiv discrete ⇒ finitely generated

Corollary 2.2.42

rkZHom(E1, E2) ≤ rkZl
Hom(Z2

l ,Z2
l ) = 4

rkZ End(E) ≤ 4

Easy algebra:
Any integral domain R of char 0 which has rkZ ≤ 4 and has a positive-definite quadratic form
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d : R→ Z
s.t. d(ab) = d(a)d(b)

then
(1) R∼=Z (d(x) = x2) or

(2) R∼=OK order in imaginary quadratic field K = Q(
√
−D) (d(x) = |x|2)

(3) R rank 4 order in a quaternion algebra (d(x) = a2 + b2 + c2 + d2)

Corollary 2.2.43
End(E) is one of the 4 cases above, in character 0 (commutative) either (1) or (2)

2.3 Elliptic Curves over C

2.3.1 Aside

A non-singular projective curve C over C with its usual complex topology is a compact (i.e. PnC
compact) complex manifold (i.e. non-singular) of dimension 1 (i.e. curve)
⇒ a complex Riemann surface.
Conversely, by Riemann Existence Theorem:
Every complex Riemann surface X comes from a C over C

C −→ X

rational function meromorphic function

C(C) = C(X)

(This is an equivalence of categories)
(Note: This is very hard, the main step is to prove C(X) ̸= C)

Universal curve X̃ has a complex structure (easy),

X = X̃/π1(X)

(π1(X) is a discrete group acting freely, the fundamental group)

Complex Uniformization Theorem (also hard). As a C-manifold,

X̃ = C∪{∞} = P1
C if g(X) = 0

X̃ = C if g(X) = 1

X̃ = {z : |z| < 1} if g(X) ≥ 2

If g = 1, then AutC−infC = {z 7→ az + b|a, b ∈ C}
fixed-point free ones = {z 7→ z + w|w ∈ C}
π1(X) = ∼=Z⊕Z ⇒ X ∼=C /Λ (Λ lattice)
⇒ {C /Λ} = elliptic curves over C

Our Goal: Do this explicitly
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2.3.2 Theory

Recall function on C is meromorphic ⇔ ∀a ∈ C it has Laurent expansion at a:

f(z) =

∞∑
n=n0

cn(z − a)n cn0 ̸= 0 unless f ≡ 0

Notation:

orda f := n0 ∈ Z for order of vanishing at a (discrete valuation)

resa f := c−1 residue at a

Definition 2.3.1
A lattice Λ ⊆ C is a discrete subgroup of rank 2

Λ = Zw1 + Zw2

(Note: Basis w1,w2 not unique, up to GL2(Z)) We use π to denote the fundamental domain of Λ (i.e.
the parallelogram spanned by w1 an w2)

An elliptic function (w.r.t to Λ) is a meromorphic function s.t.

f(z + w) = f(z) ∀z ∈ C, w ∈ Λ

(These are precisely meromorphic functions on X = C /Λ, they form a field C(X) ⊇ C)

Lemma 2.3.2
f ̸≡ 0 elliptic function

(1) f analytic (all orda f ≥ 0) ⇒ f constant

(2)
∑

w∈C /Λ resw f = 0

(3)
∑

w∈C /Λ ordw f = 0

(4)
∑

w∈C /Λ ordw f · w ∈ Λ (i.e. =0 in C /Λ)

(Note: (2),(3),(4) are finite sums (π compact), well-defined)

Proof

(1) f analytic ⇒ bounded on π ⇒ bounded on C ⇒ constant by Liouville’s Theorem

(2)
∑

res =
1

2πi

∫
∂π
f(z)dz =

∫
+

∫
+

∫
+

∫
= 0

(f elliptic)

(3)
∑

ord =
1

2πi

∫
∂π

f ′

f
dz = 0 as above

(4) Use z f
′

f (Exercise)

Notation: L(n(0)) = {elliptic functions w.r.t. Λ s.t. f analytic for z /∈ Λ, ordz f ≥ −n for z ∈ Λ}

Lemma 2.3.2(1) ⇒ L(0) = C constants
Lemma 2.3.2(2) ⇒ L(1(0)) = C (by LHS=res0 f , RHS=0⇒ analytic at 0 as well)
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Definition 2.3.3
Eisenstein series of weight 2k

G2k = G2k(Λ) :=
∑
w∈Λ
w ̸=0

w−2k k ≥ 2

(Exercise:
∑

0 ̸=w∈Λ
1

|w|α <∞ ⇔α > 2)

Example 2.3.4
Λ = Z+

√
2iZ

G4 = 2.23661 . . .
G6 = 1.89217 . . .

Theorem 2.3.5

L(2(0)) = ⟨1, ℘(z)⟩

where ℘(z) unique elliptic function (Weierstrass ℘-function) s.t.

℘(z) =
1

z2
+O(z) at z = 0

(O(z) means, at z = 0, Laurent series has c−1 = 0, c0 = 0)

Proof
Uniqueness:
dimL(2(0)) ≤ 2, clear:
℘1 − ℘2 ∈ L(0) ⇒ constant, zero at z = 0, as cannot have pole of order 1 by previous lemma ⇒ 0

Existence:
Define the Weierstrass ℘-function as follows

℘(z) := ℘(z; Λ) =
1

z2
+
∑
w∈Λ
w ̸=0

1

(z − w)2
− 1

w2

If |w| > 2|z| ∣∣∣∣ 1

(z − w)2
− 1

w2

∣∣∣∣ = ∣∣∣∣ z(2w − z)w2(w − z)2

∣∣∣∣ ≤ 10 · |z|
|w|3

note
∑

|w|≥2|z|

≤ 10 · |z|
(∑ 1

|w|3

)
<∞

So this converges uniformly on compact ⊆ C \Λ
⇒ analytic on C \Λ, double pole at w ∈ Λ

℘(z) elliptic:
℘(z) clearly even; in particular ℘(w2 ) = ℘(−w

2 ) for w ∈ Λ

℘′(z) = −2
∑
w∈Λ

1

(z − w)3

this clearly is elliptic

⇒ ℘(z + w)− ℘(z) = c(w) constant (w ∈ Λ)

z = −w
2 ⇒ c(w) = 0 ⇒ ℘(z) elliptic
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Remark. For |z| < |w|

1

(z − w)2
− 1

w2
= w−2

(
1(

1− z
w

)2 − 1

)

=

∞∑
k=1

n+ 1

wn+2
zn

Sum over w ∈ Λ, interchange order

⇒ ℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k

Theorem 2.3.6
Writing

g2 = g2(Λ) := 60G4(Λ)

g3 = g3(Λ) := 140G6(Λ)

We get
℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

Proof

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + · · ·

℘(z)3 =
1

z6
+ 9G4

1

z2
+ 15G6 + · · ·

℘′(z)2 =
1

4z6
− 24G4

1

z2
− 80G6 + · · ·

LHS − RHS in Theorem is elliptic, holomorphic (i.e. analytic, i.e. no poles as all negative power of z
cancel)
LHS − RHS ≡ 0 by Lemma 2.3.2 (1)

Remark. (see picture)
℘(z) even, ℘′(z) odd ⇒ ℘′(Ti) = ℘′(−Ti) ⇒ ℘′(Ti) = 0
d
dz (

1
z2
) = −2

z3
⇒ −3(O)

div℘′(z) = −3(O) + (T1) + (T2) + (T3)

and ∀ a ∈ C

div(℘(z)− a) = −2(O) + (w) + (−w) for some w ∈ C /Λ
and div(℘(z)− ℘(Ti)) = −2(O) + 2(Ti)

in particular, ℘(Ti) distinct

Theorem 2.3.7
Λ ⊆ C lattice, X = C /Λ. Then

C(X) = C(℘(z), ℘′(z))

Proof
Take f ∈ C(X). May assume f is even

general f =
1

2
(f(z) + f(−z))︸ ︷︷ ︸
even elliptic

+
1

2
(f(z)− f(−z))︸ ︷︷ ︸
odd elliptic

⇒ odd = ℘′ × even
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Now div(f) = n1[(z1) + (−z1)] + · · ·+ nk[(zk) + (−zk)] for some nk ∈ Z, zk ∈ C /Λ
(check Ti carefully using f ′ odd)

Define
f̃ :=

∏
i

[℘(z)− ℘(zi)]ni

⇒ div(f) = div(f̃) +���?(0)

both deg div(f), div (f̃) =0 ⇒ f̃
f has no zero or poles

⇒ holomorphic elliptic ⇒ constant

Write
EΛ : y2 = 4x3 − g2x− g3

where g2 = g2(Λ), g3 = g3(Λ)
EΛ
∼= y2 = (x− ℘(T1))(x− ℘(T2))(x− ℘(T3))

In particular, this is non-singular
Actually, (℘(z) : ℘′(z) : 1) ∈ P2 and Λ 7→ (0 : 1 : 0) = O

Theorem 2.3.8
ϕ as follows is an analytic isomorphism of complex Lie groups

ϕ : C /Λ → EΛ

z 7→ (℘(z), ℘′(z))

Proof
Surjectivity:
O, (αi, 0) (where αi is root of RHS) in the image
Take (x, y) ∈ EΛ where y ̸= 0,∞

div(℘(z)− x) = −2(O) + (w1) + (−w1) for some w1 ∈ C /Λ

⇒ ℘(w1) = x
(℘′(w))2 = f(℘(w)) = f(x) = y2

⇒ y = ℘′(w1) or y = −℘′(w1) = ℘′(−w1)
⇒ either w1 or −w1 maps to (x, y)

Injectivity: Check Ti; otherwise follows from the proof of surjectivity

locally analytic isom:
dx
y differential on E with no zeros/poles

ϕ∗
dx

y
=
d℘(z)

℘′(z)
= ���℘′(z)dz

���℘′(z)
= dz

⇒ ϕ∗ isomorphism on cotangent spaces

ϕ−1 group homomorphism
If P1 + P2 + P3 = O on EΛ

Take f ∈ C(EΛ) s.t.
div(f) = (P1) + (P2) + (P3)− 3(O)

say ϕ : zi 7→ Pi. Then
div(ϕ∗f) = (z1) + (z2) + (z3)− 3(O)

(Note: ϕ∗f = f(℘(z), ℘′(z)) which is meromorphic)

previous Lemma 2.3.2 (4) ⇒ z1 + z2 + z3 = 0 mod Λ
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Corollary 2.3.9
A divisor D =

∑
zi C /Λ ni(zi) is a divisor of some elliptic function

⇔
∑
ni = 0 and

∑
nizi = 0 mod Λ

Proof
True on EΛ

2.3.3 Constructing Λ from E, and ϕ(−1) : E → C /Λ

(see picture)

If ϕ(z0) = P0, then

z0 =

∫ z0

0
dz =

∫ z0

0

d℘(z)

℘′(z)
=

∫ P0

O

dx

y
=

∫ x(P0)

∞

dx√
4x3 − g2x− g3︸ ︷︷ ︸

elliptic integral

(x(P0) = x-coordinate of P0)

⇒ P 7→
∫ x(P )

∞

dx√
4f(x)

is ϕ−1 : E → C

∫ P0

O
dx
y depends on the choice of a path from O to P (see picture)

The integral is well-defined up to Z-multiples of
∫
γ1

dx
y ,

∫
γ2

dx
y with γ1, γ2 basis of H1(E,Z) = Λ

(see picture)

The lattice Λ is recovered as Z ·
∫
γ1

dx
y + Z ·

∫
γ2

dx
y ⊆ C
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Choose (picture)

⇒
∫
γ1

= w1,
∫
γ2
w2

Example 2.3.10
E : y2 = x(x− 1)(x− 3). Two well-defined choices of

√
x(x− 1)(x− 3) on C with (0, 1) and (3,∞)

removed, call them “+
√
·” and “−

√
·”

E = ∪ = ∪

=

Deform it ⇒

w1 = �2

∫ 1

0

dx√
�4x(x− 1)(x− 3)

= 0.620131 . . .

w2 = �2

∫ 3

1

dx√
�4x(x− 1)(x− 3)

= 2.20335 . . . · i

This proves this E comes from a Λ (!!)
(namely, this Λ = Zw1 + Zw2)

2.3.4 Conclusion

Let E : y2 = (x− α1)(x− α2)(x− α3)

• If αi ∈ R, E comes from a lattice Λ = Zw1 + Zw2, w1 ∈ R, w2 ∈ i · R

• If α1 ∈ R, α2 = α3 similar argument ⇒ E comes from Λ = Zw1+Zw2, w1 ∈ R, w2 =
1
2w1+i ·R

• If αi ∈ C arbitrary distinct, can show that
∫
γ1
,
∫
γ2

are still linear independent over R, so they

form a lattice Λ (and C /Λ = E by construction)

Corollary 2.3.11
deg[m] = m2 and E[m]∼=Z /mZ×Z /mZ all m ≥ 1

Proof
E∼=C /Λ∼=R /Z×R /Z as abelian group
E[m]∼=( 1

m Z /Z)2∼=Z /mZ×Z /mZ
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2.3.5 Homotheties and Isogenies

What are isogenies E = C /Λ→ C /Λ′ = E′?

• If α ∈ C s.t. αΛ ≤ Λ′ then

C /Λ → C /Λ′

z 7→ αz

well-defined holomorphic E → E′, O 7→ O, given by

ϕα : (℘Λ(z), ℘
′
Λ(z)) 7→ (℘Λ′(αz), ℘′

Λ′(αz))

But z 7→ ℘Λ′(αz) is elliptic w.r.t. Λ for w ∈ Λ

℘Λ′(α(z + w)) = ℘Λ′(αz + αw︸︷︷︸
∈Λ′

) = ℘Λ′(αz) similar for ℘′
Λ′(αz)

⇒ ℘Λ′(αz), ℘′
Λ′(αz) inC(E) = C(℘Λ(z), ℘

′
Λ(z))

i.e. ϕα is a rational map

• Conversely, ϕ : E → E′ holomorphic, ϕ(O) = O; e.g. ϕ isogeny.
ϕ : C→ C /Λ′, lifts to the universal cover

ϕ̃ : C→ C , ϕ̃(Λ) ⊆ Λ′

For w ∈ Λ,
z 7→ ϕ̃(z + w)− ϕ̃(z) C→ Λ′ holomorphic

is constant (dependent on w). So ϕ̃′(z) is elliptic holomorphic ⇒ ϕ̃′ = constant α, i.e.

ϕ̃(z) = αz + ��β

Corollary 2.3.12

{isogenies ϕ : E → E′} = {α ∈ C |αΛ ⊆ Λ′}

ϕ 7→ α =
ϕ∗dz

dz
=
ϕ∗(dx/y)

dx/y

ϕ ← [ α as above

Corollary 2.3.13
rkZ(LHS) ≤ 4 (confirming previous result)

We proved:

Theorem 2.3.14
These categories are equivalent:

• Elliptic curves over C, maps: isogenies

• Elliptic curves over C, maps: analytic maps taking O to O
• Lattices Λ ⊆ C, maps {α ∈ C |αΛ ⊆ Λ′}

Corollary 2.3.15
E∼=E′ ⇔ Λ = αΛ′ for some α ∈ C× (note lattices are homothetic), i.e.

Elliptic curves
∼=

=
Lattices

homothety
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2.3.6 Curves with Complex Multiplication

Remark. Every Zw1 + Zw2 is homothetic to Λ = Z+Z τ for some τ ∈ H = {z ∈ C |Im(z) > 0}

Exercise: τ unique up to SL2(Z)-action

Suppose,

E = C /Λ has CM, i.e.

R = End(E) = {α ∈ C |αΛ ⊆ Λ} % Z

We say that E has complex multiplication (CM) by R

α ∈ R, α · 1 = α ∈ Λ, α · τ ∈ Λ
⇒ α = a+ bτ, ατ = c+ dτ for some a, b, c, d ∈ Z
⇒ bτ2 + (a− d)τ − c = 0 (quadratic equation for τ over Q)
⇒ τ ∈ K = Q(

√
−D), some D ∈ Z>0; imaginary quadratic field

R ⊆ Z+Z τ rank 2 subring ⇒ order in K
(Exercise: R = Z+f · OK for some f ≥ 1, the conductor of R)

Λ an R-module ⊆ K ⇒ fractional ideal of R

Conversely, for each order R ⊆ K (any R, any K) e.g. Λ = R has CM by R

Generally, {
elliptic curves
with CM by R

}/
isom. =

{
fractional ideal

of R

}/
∼ = Class group of R

(I1 ∼ αI2 for α ∈ K×)
(note the above are finite groups)

Example 2.3.16
R = Z[i],K = Q(i)
E : C /Z+Z i y2 = x3 + x

Example 2.3.17
R = Z[ζ3],K = Q(

√
−3)

E : C /Z+Z ζ3 y2 = x3 + 1

Example 2.3.18
R = Z[

√
−5],K = Q(

√
−5) (has class number 2)

E : C /Z+Z
√
−5 j = 632000 + 282880

√
5

E : C /Z+Z 1+
√
−5

2 j = 632000− 282880
√
5

Beyond Syllabus Fact: j-invariants of elliptic curves with CM by OK generate maximal unramified
abelian extension, i.e. the Hilbert class field, of K, e.g.:

Q(
√
−5) unramifiedQ(

√
−5,
√
5)

The study of these is called Theory of CM.

Exercise: If E ∼ E′ isogenies then E has CM⇔ E′ has CM; with the same K
Conversely, any 2 elliptic curves with CM by subrings (̸= Z) of K = Q(

√
−D) with the same D are

isogeneous

Exercise: End(E) = Z[α], complex conjugation = taking dual isogeny, degree = | · |2
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Chapter 3

Arithmetic

3.1 Elliptic Curves over Perfect Field

Ground field K, always perfect

Definition 3.1.1

K is perfect if every finite extension of K is separable (⇔ K
Gal(K/K)

= K)

Example 3.1.2
Perfect field: char K=0 K = K
K = Fpn
Non-perfect field: K = Fp(X)

Definition 3.1.3
A curve C ⊆ Pn

K
is defined over K (written C/K) if it can be give by

C :


f1 = 0

...

fm = 0

fi ∈ K[x0, . . . , xn] homog. polynomials

The set of K-rational points C(K)= {(a0, . . . , an) ∈ C|ai ∈ K}

Exercise: C : x2 + y2 = −1 ⊆ P2
C defined over Q : C(Q) = ∅

Definition 3.1.4
K-rational functions: K(C) = {fg ∈ K(C)|f, g ∈ K(x0, . . . , xn)}
K-rational maps: C1 → C2 = those defined by K-rational functions

Fact: {non-singular curves over K} → { f.g. extensions L of K of tr.deg. 1 s.t. L∩K = K} (exercise:
why L ∩K) C 7→ K(C) this is an equivalence of categories

Definition 3.1.5
K-rational divisors

DivK(C) = (Div(C)︸ ︷︷ ︸
over K

)Gal(K/K) Galois invariants

Clearly f ∈ K(C)× ⇒ div(f) ∈ DivK(C)
(and conversely, the lemma below)
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Example 3.1.6
y2 = x3 + 1 over Q
div(x) = (0, 1) + (0,−1)− 2(O)
div(y) = (−1, 0) + (−ζ, 0) + (−ζ2, 0)− 3(O)

Lemma 3.1.7
D ∈ DivK(C) ⇒ L(D) has a basis of functions in K(C)

Proof
General fact about vector space with Gal(K/K)-action (Silverman III, 5.8.1)

Definition 3.1.8
An elliptic curve is a pair (E,O), E/K genus 1, O ∈ E(K)

Example 3.1.9
(Selmer) C : 3x3 + 4y3 = 5 has genus 1, C(Q) = ∅, NOT an elliptic curve over Q

• Riemann-Roch + Lemma ⇒

E∼= y2 + a1xy + a3y = x3 + · · ·

with ai ∈ K, unique up to

x 7→ u2x+ r u, r, s, t ∈ K
y 7→ u3y + sx+ t u ̸= 0

• Addition: E × E → E, inverse: E → E both defined over K. In particular (P + Q)σ =
P σ +Qσ ∀σ ∈ Gal(K/K)
Thus E(K) abelian group (main object of study)

Definition 3.1.10

HomK(E1, E2) = K-rational isogenies

= K-morphism s.t. O 7→ O
= Hom(E1, E2)

Gal(K/K)

EndK(E) = HomK(E,E)
subring
⊆ End(E) over K

Example 3.1.11
E : y2 = x3 + x over Q
EndQ(i)(E)∼=Z[i]
[i] : (x, y) 7→ (ix,−y)
EndQ(E) = Z
ϕ∗dx/y

dx/y
/∈ Q for ϕ ∈ Z[i] \ Z

⇒ cannot be defined over Q
i.e. E has CM over Q(i) but not over Q

3.1.1 Torsion and Weil Pairing

E/K, m ≥ 1, char K - m
Recall: m-torsion subgroup E[m] = {P ∈ E(K)|mP = O}∼=Z /mZ+Z /mZ as abelian group
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If mP = O and σ ∈ Gal(K/K) then
m(P σ) = (mP )σ = Oσ = O ⇒ P σ ∈ E[m]
⇒ E[m] is Gal(K/K)-module with linear action, i.e. we have representation:

ρm : GalK/K → Aut(E[m])∼=GL2(Z /mZ)(= GL2(Fl) if prime m = l)

Example 3.1.12
E/Q : y2 = (x− 1)(x2 + 1) ,m = 2

E[2] = {O, (1, 0), (i, 0), (−i, 0)} ∼=Z /2Z+Z /2Z

ρ2 : Gal(Q/Q) �Gal(Q(i)/Q)∼=C2 ↪→ S3 = GL2(F2)

id 7−→
(
1 0
0 1

)
complex conjugation 7−→

(
1 1
0 1

)
Example 3.1.13
E/Q : y2 = x3 − 2

ρ2 : Gal(Q/Q)�Gal(Q(ζ3,
3
√
2)/Q)∼=S3 = GL2(F2)

Remark. Important Theorem (Serre): E/K non-CM,K number field ⇒ ρl surjective Gal(K/K)�GL2(Fl)
for almost all l

Notation: µm = m-th roots of unity in K (∼=Z /mZ abelian group)∧2E[m]∼=µm as a Galois module:

Theorem 3.1.14
E/K. There is a bilinear, alternating, non-degenerate, Galois-equivalent pairing

em : E[m]× E[m]→ µm Weil pairing

which is adjoint w.r.t. isogenies

S, T ∈ E[m]
bilinear: em(S1 + S2, T ) = em(S1, T )em(S2, T ) and em(S, T1 + T2) = em(S, T1)em(S, T2)
alternating: em(T, T ) = 1 (⇒ em(S, T ) = em(T, S)

−1)
non-degenerate: if em(S, T ) = 1 ∀S ∈ E[m] then T = O
Galois: em(S

σ, T σ) = em(S, T )
σ ∀σ ∈ Gal(K/K)

adjoint: ϕ : E1 → E2, ϕ̂ : E2 → E1, S ∈ E1[m], T ∈ E2[m], then em(S, ϕ̂(T )) = em(ϕ(S), T )

Over C: Λ = Zw1 + Zw2

em(
a

m
w1 +

k

m
w2,

c

m
w1 +

d

m
w2) = exp(2πi

ad− bc
m

) ∀a, b, c, d ∈ Z /mZ

Proof
Construction:
Say D1 =

∑
i ai(Pi), D2 =

∑
j bj(Qj) are disjoint if Pi ̸= Qj (written D1 ∩D2 = ∅)

If f ∈ K(E)×, D =
∑

i ai(Pi) with div(f) ∩D = ∅
then define

f(D) :=
∏
i

f(Pi)
ai ∈ K×
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Exercise: (Weil reciprocity) If div(f) ∩ div g = ∅, then f(div(g)) = g(div(f)) (Hint: do P1 first)

Note:

E[m] = {D ∈ Pic0(E)|mD ∼ 0}
T 7→ (T )− (O)∑

aiPi ← [ D =
∑

ai(Pi)

We define em on the RHS:
Choose DS =

∑
ai(Pi), DT =

∑
bj(Qj)

mDS = div(fS)

mDT = div(fT )

DS ∩DT = ∅ (easy using Riemann-Roch)

So now we can define:

em(S, T ) :=
fS(DT )

fT (DS)

Note: em(S, T )
m =

fS(mDT )

fT (mDS)
=
fS(div(fT ))

fT (div(fS))
= 1

⇒ em(S, T ) ∈ µm

Exercise: em is well-defined
Properties: Computation

3.1.2 Characteristic polynomials of endomorphisms

E/K, ϕ ∈ EndK(E),m = deg ϕ

Lemma 3.1.15
∃aϕ ∈ Z s.t. the characteristic polynomial

fϕ(T ) := T 2 − aϕT +m

has fϕ(ϕ) = 0

Proof
deg ϕ = ϕϕ̂ = m
deg(1− ϕ) = (1− ϕ)(1− ϕ̂) = 1− (ϕ+ ϕ̂) +m ⇒ ϕ+ ϕ̂ ∈ Z ⊆ EndK(E)
Let aϕ := ϕ+ ϕ̂∈ Z
⇒ fϕ(T ) = T 2 − (ϕ+ ϕ̂)T + ϕϕ̂
⇒ fϕ(ϕ) = 0

Lemma 3.1.16
fϕ(T ) = (T − α)(T − α) with α ∈ C, |α| =

√
m

Proof
Need ∆fϕ = a2ϕ − 4m ≤ 0

f( bc) =
1
c2
deg(cϕ− b) ≥ 0 ∀ bc ∈ Q

⇒ f(x) ≥ 0 ∀x ∈ R ⇒ ∆ ≤ 0
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Lemma 3.1.17
ϕ : E → E induces ϕl : TlE → TlE (l ̸= char K)
and

det(ϕl − TI) = fϕ(T )

i.e. characteristic polynomial of ϕl is in Z[T ] (not just Zl[T ]) and is independent of l

Proof
Want: detϕl = deg ϕ ∀ϕ ∈ EndK(E) (so then constant term of T 2 + aϕT + c is clear)
Then also

aϕ = 1− deg(1− ϕ) + deg ϕ

ϕl =

(
a b
c d

)
∈ M2(Zl)

tr ϕl = 1− det(1− ϕl) + det(ϕl)

Then linear term of the characteristic polynomial are done too.

To prove deg ϕl = deg ϕ. Write E[ln] = Z /ln Z ·v1 + Z /ln Z ·v2, ϕl =
(
a b
c d

)
, e = eln for the Weil

pairing

e(v1, v2)
deg ϕ = e(deg ϕ · v1, v2) = e(ϕ̂ϕ · v1, v2)

= e(ϕv1, ϕv2) = e(av1 + cv2, bv1 + dv2)

= e(v1, v2)
ad−bc = e(v1, v2)

detϕl

e non-degenerate ⇒ deg ϕ ≡ detϕl mod ln

True for all n ≥ 1 ⇒ deg ϕ = deg ϕl

3.2 Elliptic Curves over Finite Fields

K = Fq finite, q = pd

Pn(K) = {(a0 : . . . : an) ∈ Kn+1 \ {0}}/K× finite set, size qn+1−1
q−1

C/K curve ⇒ C(K) finite
E/K elliptic curve ⇒ E(K) finite abelian group

Example 3.2.1
E : y2 = x3 + 1 over K = F5

|E(F5)| = 6, E(F5) = {O, (0,±1), (2,±3), (4, 0)}∼=Z /6Z
|E(F25)| = 36
|E(F125)| = 126, etc.

Definition 3.2.2
Zeta-function of a curve C/K (or a variety)

ZC/Fq
(T ) := exp

( ∞∑
n=1

#C(Fqn)
n

Tn

)
= 1 +#C(Fq)T + · · ·

Example 3.2.3
C = P1
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#P1(Fqn) = 1 + qn (since {∞} ∪K), so

ZP1 /Fqn
(T ) = exp

( ∞∑
n=1

Tn

n
+

∞∑
n=1

qnTn

n

)
= exp(− log(1− T )− log(1− qT ))

=
1

(1− T )(1− qT )

Theorem 3.2.4 (Hasse)
For an elliptic E/Fq

ZE/Fq
(T ) =

(1− αT )(1− αT )
(1− T )(1− qT )

with |α| = √q, α ∈ C

=
1− aT + qT 2

(1− T )(1− qT )
with a = q + 1−#E(Fq)

and T 2 − aT + q = fFrobq(T ) = characteristic polynomial of Frobq on TlE for l - q

Corollary 3.2.5
#E(Fq) determines #E(Fqn) ∀n ≥ 1

Corollary 3.2.6 (Hasse-Weil Inequality)
#E(Fqn) = 1− αn − αn + qn ∀n ≥ 1
In particular,

|#E(Fqn)− qn − 1| ≤ 2
√
qn

Remark. (Weil:) This is true for all curves, numerator = inverse characteristic polynomial of Frobq
on Tl(Jac(C)) of degree 2g(C)
“Weil conjectures”: Has analogue for all varieties, but this is much harder (Dwork, Deligne, Grothen-
deck)
Tl  étale cohomology

Corollary 3.2.7
ψ : E → E′ isogeny over K, then #E(Fq) = #E′(Fq)

Proof
ψ induces TlE → TlE

′, isomorphism of Gal(K/K)-modules when l - degψ
⇒ Frobq ∈ Gal(K/K) has same characteristic polynomial on both

Remark. Converse also holds (Silverman Chapter V)
Generally for abelian varieties over Fq

Hom(A,A′)⊗ Zl
∼−→ HomGal(K)/K(TlA, TlA

′)

this is the “Tate’s Theorem on endomorphisms”
(Faltings:) Also true over number field, but much harder

Can think of TlE as something that replaces a complex lattice

Proof of Hasse’s Theorem 3.2.4
Let ϕ = Frobq : E → E(q) = E (Recall E(q) is the E with coefficient in Fq = {a ∈ Fq|aq = a})
⇒ ϕ ∈ End(E)
Write fϕ(T ) = 1− aT + qT 2 = (1− αT )(1− αT )

E(Fq) = fixed points of ϕ : E → E = ker(1− ϕ)
1− ϕ is separable, because (1− ϕ)∗w = w − 0 ̸= 0
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⇒ | ker(1− ϕ)| = deg(1− ϕ)
= (1− ϕ)(1− ϕ̂)
= 1− a+ q

= 1− α− α+ q

Similarly

|E(Fqn)| = deg(1− ϕn)
= (1− αn)(1− αn) α, α eigenvalues on TlE

= 1− αn − αn + qn

Put these in Z(T ) and we are done

Example 3.2.8
E : y2 = x3 + 1 over F5

ϕ = Frobp satisfies T 2 − aT + q = 0
a = 5 + 1−#E(F5) = 0

⇒ fϕ(T ) = 1 + 5T 2, ZE/Fq
(T ) = 1+5T 2

(1−T )(1−5T ) (α, α =
√
−5,−

√
−5)

#E(F5n) = 1− (
√
−5)n − (−

√
−5)n + 5n

= 6 if n = 1

= 36 if n = 2

= 126 if n = 3

3.2.1 Reduction mod p

K = Q, p prime, p-adic valuation:

v = vp : Q× → Z

pn
a

b
7→ n

with (ab, p) = 1
O = {ab ∈ Q |p - b}
O mod p = k = Fp residue field

Generally K field, valuation v : K× → Z
O = {x ∈ K|v(x) ≥ 0} integer ring
p π uniformiser, v(π) = 1
k = O /π residue field

Definition 3.2.9
E/K elliptic curve. A Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is integral at p if all ai ∈ O (∃ rescale ai 7→ pi enough times)
Then ∆ ∈ O, v(∆) ≥ 0

A minimal model at p is an integral model with v(∆) minimal among integer models
THe reduced curve:

Ẽ/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai = ai mod p

for any minimal model
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Easy: minimal model is unique up to
x 7→ u2x+ r
y 7→ u3y + sx+ t

;u, r, s, t ∈ O, u ∈ O×; induces ∼= on

reduced curves. When char k = p ̸= 2, 3, may take y2 = x3 + ax+ b,
x 7→ u2x
y 7→ u3y

as usual.

Example 3.2.10
y2 = x3 − 3 · 55x− 3 · 56 integral, not minimal at p = 5, ∆ = −24 · 33 · 513
x 7→ 52x
y 7→ 53y
ai 7→ 5−iai
∆ 7→ 5−12 ·∆
 y2 = x3−3x−3 integral, ∆ = −24 ·33 ·5 minimal at 5 (v(∆) can only change by multiples of 12)
Reduced curve: Ẽ : y2 = x3 + 2x+ 2 = (x− 1)2(x+ 2) over F5

Singular (∆ mod p = 0)

Exercise:
For p ̸= 2, 3 and j(E) ∈ O integral model y2 = x3 + ax+ b, a, b ∈ O, is minimal ⇔ v(∆) < 12
(p = 2, 3 : ⇐ still true, but ⇒ false, classification is more complicated, need “Tate’s algorithm”)

Remark. If K = Q (or number field with class number 1) may choose ai ∈ Z (or ai ∈ OK resp.)
minimal at all primes, global minimal model

3.2.2 Reduction types

Take minimal model (p ̸= 2), y2 = x3 + ax2 + bx+ c =: f(x), a, b, c ∈ O
Roots of f = f mod p

• Good reduction, ∆ ̸≡ 0 mod p:

Distinct roots, Ẽ elliptic curve (i.e. non-singular)

• Bad reduction, ∆ ≡ 0 mod p:

– Multiplicative reduction

Double root Ẽ : y2 = x2(x+ η), this has 2 cases:

(1) split:
√
η ∈ k×

(2) non-split:
√
η /∈ k×

– Additive reduction
Triple root, equivalently, 16a2 − 28b ̸≡ 0 mod p; Ẽ : y2 = x3

Definition 3.2.11
Ẽns(k) := Ẽ(k) \ { singular point if there is one}

In all cases, this is an abelian group with identity 0 = (0 : 1 : 0)
Group law P +Q+R = 0 ⇔ P,Q,R on a line

Reduction type Ẽns(k) isomorphic to (via (x, y) 7→ y/x)

Additive P1 \{0} = G a additive group

Split multiplicative P1 \{±√η} = G m multiplicative group

Non-split multiplicative k(
√
η)×/k× abelian group of order pn + 1

y2 = x3 + ηx2 “looks like” y2 − ηx2 = 0 (near (0,0)), so “looks like” (y −√ηx)(y +√ηx) = 0
±√η slopes of the two tangent lines (asymtopes)
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Proposition 3.2.12
K ′/K finite extension, v′ : (K ′)×�Z s.t. v′|K× = ev (e ≥ 1 ramification index)

(1) E good or multiplicative reduction over K ⇒ minimal model stays minimal, reduction type
stays the same (non-split may become split)

(2) E addictive over K ⇒ ∃K ′ s.t. E/K ′ either good, v(jE) ≥ 0 or multiplicative, v(jE) < 0
We say E/K has potentially good (resp. potentially multiplicative) reduction

Good and multiplicative reduction are called semistable reduction type
Additive also called unstable

Proof
(p ̸= 2)

(1) Clear from the equation

(2) Adjoin roots of f(x) to K, put E in Legendre form (c.f. Example Sheet 2):

y2 = x(x− 1)(x− λ), λ ∈ O

integral model j =
(λ2 − λ+ 1)3

λ2(λ− 1)2

λ ̸≡ 0, 1 mod v′ ⇒ Ẽ elliptic; v(j) ≥ 0
λ ≡ 0, 1 mod v′ ⇒ Ẽ has double root; v(j) < 0

3.2.3 Reduction on Points

Pn(K) ∋ (x0 : · · · : xn) = (αx0 : · · ·αxn) choose α ∈ K× s.t. αxi ∈ O for some xj ∈ O×

7→ (αx0 : · · · : αxn) ∈ Pn(k) (via mod p)

Clearly independent of the choice of α
For E/K elliptic curve, get

mod p : E(K) → Ẽ(k)

(x, y) 7→

{
(x, y) if x, y ∈ O
(0 : 1 : 0) = 0 if x, y /∈ O

Definition 3.2.13
E0(K) = {P ∈ E(K)|P reduces to a point in Ẽns}
subgroup of E(K) as P +Q+R = 0 ⇒ P,Q,R on a line
⇒ P,Q,R on a line
⇒ P +Q+R = 0 in E0(K)
and E0(K)→ Ẽns(k) is a group homomorphism

Definition 3.2.14
E1(K) = kernel of above homomorphism
= {P ∈ E(K)|P reduces to (0 : 1 : 0)}
= {P = (x, y) ∈ E(K)|vp(x) ≥ 1, vp(y) ≥ 1} subgroup, so get exact sequence:

0→ E1(K)→ E0(K)

group hom
mod p−−−−−−→ Ẽns(k)
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Example 3.2.15
E/Q : y2 = x(x+ 2)(x− 3) ∆ = 263252, p = 3
↓
Ẽ/F3 : y2 = x2(x− 1) = x3 + 2x2 singular (

√
2 /∈ F3 non-split multiplicative reduction)

Ẽns(F3)∼=F×
9 /F

×
3
∼=Z /4Z = {O, (2, 1), (1, 0), (2, 2)}

(see picture)

O mod 3−−−−−→ O
T1 = (−2, 0) 7→ (1, 0)
T2 = (0, 0) 7→ (0, 0) (singular)
T3 = (3, 0) 7→ (0, 0) (singular)
P = (−1,−2) 7→ (2, 1)
2P = (4916 ,−

63
64) 7→ (1, 0)

2P + T1 = (− 2
82 ,

280
729) 7→ O

E(Q) =

T1︷︸︸︷
Z /2×

T2︷︸︸︷
Z /2×

P︷︸︸︷
Z∪

| index 2

E0(Q) = Z /2︸︷︷︸
T1

× Z︸︷︷︸
P∪

| index 4 (in this case, E0/E1 ↔ Ẽns(F3))

E1(Q) = Z︸︷︷︸
2P+T1

3.3 Elliptic Curves over Local Fields

3.3.1 Completeness and Hensel

K, v : K×�Z, O, k, π as above  topology on K given by a norm

|x| =
(

1

#k

)v(x)
x ∈ K, |0| = 0

Properties:

|xy| = |x| · |y|
|x+ y| ≤ max(|x|, |y|) ≤ |x|+ |y| strong triangle inequality

|x| = 0 ⇔ x = 0

| · | is called a non-Archimedian absolute value

Definition 3.3.1
We say xn(∈ K)→ x(∈ K) if |xn − x| → 0
⇔ v(xn − x)→∞
⇔ xn ≡ x mod larger and larger powers of π as n→∞

Definition 3.3.2
The completion K̂ of K (wrt v or | · |)
= the completion in topological sense
= {Cauchy sequences xn, xn ∈ K, |xn − xm| → 0 as n,m→∞}/{ sequence xn → 0}
= field, contains K; v : K̂�Z extending one on K with ring of integer Ô, and same π, k
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Definition 3.3.3
K complete ⇔ K = K̂ ⇔ every Cauchy sequence converges

(Alternatively: Ô := lim←−n≥1
(O /πn), K̂ := ff(Ô))

Example 3.3.4
K = Q, v = vp

Ô = Zp =

{ ∞∑
n=0

anp
n|an ∈ {0, . . . , p− 1}

}
⊇ Z

K̂ = Qp =

{ ∞∑
n=n0

anp
n|n0 ∈ Z, an ∈ {0, . . . , p− 1}

}

Theorem 3.3.5 (Hensel’s Lemma)
K complete wrt v : K× → Z, f(x) ∈ O[x], f = f mod π ∈ k[x]
If α̃ ∈ k is s.t. f(α̃) = 0, f

′
(α̃) ̸= 0

then ∃!α ∈ O s.t. α = α̃, f(α) = 0
(“simple root lift from k to K”)

Proof

Lift α̃ ∈ k to any α1 ∈ O, let αn+1 = αn −
f(αn)

f ′(αn)
Check αn Cauchy so αn → α and f(α) = 0
(see Newton’s method picture)

3.3.2 Analysis of E(K) for K complete, E/K elliptic curve

Case I: E vs. E0

Theorem 3.3.6 (Kodaira-Néron)
Write n = v(∆min).
Then E(K)/E0(K) (Néron component group) is finite and

E(K)

E0(K)
∼=


Z /nZ E has split multi. reduction

{1} E has non-split multi. reduction and n odd

Z /2Z E has non-split multi. reduction and n even

Group of order ≤ 4 E has additive reduction

The first 3 cases are called reduction type In

Remark. Tate’s algorithm ⇒ more precise description.
Reduction types II, III, IV, Ion, I

∗
n, IV

∗, III∗, II∗

Proof
See exercises

Case II: E0 vs. E1

Theorem 3.3.7
K complete, 0→ E1(K)→ E0(K)→ Ẽns(k)→ 0 is exact
i.e. E0(K)� Ẽns(k)
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Proof
E : g(x, y) = 0 integral (g(x, y) = y2 + a1xy + a3y − x3 − · · · )
Take P̃ = (x̃, ỹ) ∈ Ẽns(k) \ {0} non-singular
⇒ ∂g

∂x

∣∣
P̃
̸= 0 or ∂g

∂y

∣∣
P̃
̸= 0

If ∂g∂y
∣∣
P̃
̸= 0, lift x̃ to any x ∈ O, solve g(x, y) = 0 (as equation of y) by Hensel.

If ∂g
∂x

∣∣
P̃
̸= 0, lift ỹ to y ∈ O, solve g(x, y) = 0 (as equation of x) by Hensel

Case III: E1

K complete, O, m = πO,O /m = k

Proposition 3.3.8
The following map is a bijection

E1(K) ↔ m

(x, y) 7→ x

y
(uniformiser at O)

O 7→ 0

Proof
(char k ̸= 2, 3)
E : y2 = x3 + ax+ b (A2

Z=1) ⊆ Y 2Z = X3 + aXZ2 + bZ3 (P2)
z = w3 + awz2 + bz3 (A2

Y ̸=0) ⊆ Y 2Z = X3 + aXZ2 + bZ3 (P2)

(x, y)
homogenise−−−−−−−→ (x : y : 1) = (

x

y
: 1 :

1

y
) 7→ (

x

y︸︷︷︸
w

,
1

y︸︷︷︸
z

)

(see pictures)

For each w ∈ m (i.e. w ≡ 0 mod π), equation z = w3 + awz2 + bz3 has a unique solution, z(w)
by Hensel’s Lemma ( ∂∂z

∣∣
(0,0)

= 1 ̸= 0)

⇒ E1(K) ∋ (w, z(w))↔ w ∈ m is a bijection

Remark. Do Hensel’s explicitly⇒ z(w) some explicit power series

z(w) = w3 + aw7 + bw9 + 2a2a11 + 5abw13 + · · · ∈ Z[a, b][[w]]

universal. On Y = 1 chart

y(w) =
1

z(w)
=

1

w3
− aw − bw3 − a2w5 − 3abw7 + · · ·

x(w) =
w

z(w)
=

1

w2
− aw2 − bw4 − a2w6 + · · ·

⇒
E1(K) ← (1 : 1)→ m
(x, y) 7−→ x

y

(x(w), y(w)) ←−[ w
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3.4 Formal Group

Addition E1(K)× E1(K)→ E1(K)
becomes F : m×m→ m

w1 7→ (

x1︷ ︸︸ ︷
x(w1),

y1︷ ︸︸ ︷
y(w1))

w2 7→ (x(w2)︸ ︷︷ ︸
x2

, y(w2)︸ ︷︷ ︸
y2

)
7−→

κ = y2−y1
x2−x1

x3 = κ2 − x1 − x2
y3 = −κ(x3 − x1) + y1(∈ K((w1, w2)))

7−→ w3 =
x3
y3

w3 = w1 + w2 + 2aw1w2(w
3
1 + w2

1w2 + w1w
2
2 + w3

2)

−3bw1w2(w
5
1 + 3w4

1w2 + 5w3
1w

2
2 + 5w2

1w
3
2 + 3w1w

4
2 + w5

2)

+ · · ·
=: F(w1, w2) ∈ K[[w1, w2]]

(in fact, F(w1, w2) ∈ Z[a, b][[w1, w2]] universal for y
2 = x3 + ax+ b)

Remark.
x 7→ x(w)
y 7→ y(w)

is the embedding K(E) ↪→ completion of K(E) wrt v0 : K(E)× → Z∼=K[[w]]

This defines a “kind of addition on m”

w1, w2 ∈ m F(w1, w2) ∈ m (converges)

Properties of µ (associative, commutative, etc.)
⇒ F is a formal group over O

Definition 3.4.1
A (one parameter, commutative) formal group over a ring R is F ∈ R[[X,Y ]] s.t.

(1) F(X,Y ) = X + Y+(terms of deg ≥ 2)

(2) (associative) F(X,F(Y, Z)) = F(F(X,Y ), Z)

(3) (commutative) F(X,Y ) = F(Y,X)

(4) (inverse) ∃ !i(T ) ∈ R[[T ]] s.t. F(T, i(T )) = 0 = F(i(T ), T )
(5) (identity) F(X, 0) = X,F(0, Y ) = Y

“Group law without elements”

Definition 3.4.2
A homomorphism of formal groups F → G is f ∈ TR[[T ]] s.t.

f(F(X,Y )) = G(f(X), f(Y ))

F and G are isomorphic if ∃ hom. f : F → G and g : G → F s.t. f(g(T )) = T
(Exercise: ⇒ g(f(T )) = T )

Remark. If R = O complete, m ⊆ R maximal ideal, then

F : m×m → m

a, b 7→ a⊕F b = F(a, b) (converges in m)

makes (m,⊕F ) into an abelian group, also denoted F(m)

Hom. f : F → G induces
(m,⊕F ) → (m,⊕G)

a 7→
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Example 3.4.3
Formal addition group: Ĝ a(X,Y ) = X + Y
( (m,+))

Example 3.4.4
Formal multiplicative group: Ĝm(X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1
( (1 +m,×))

Example 3.4.5
Formal group law on E : y2 = x3 + ax+ b, a, b ∈ O

Ê := F(X,Y ) = X + Y − 2aXY (· · · ) + · · ·

 (m,⊕F ) = E1(K)

Exercise: Find i(T ) in all 3 cases

Example 3.4.6
F any formal group, denote F(X,Y ) by X ⊕F Y

[0](T ) := 0

[1](T ) := T

[−1](T ) := i(T )

[m](T ) := T ⊕F T · · · ⊕F T︸ ︷︷ ︸
m times

(similarly for m < 0)

are homomorphisms F → F

E.g.: On Ê

[2](T ) = 2T − 2aT 5 − 54bT 7 − 140a2T 9 +O(T ′′)

Example 3.4.7
R field of char. 0

Ĝ a

exp(T )−1
''

Ĝm

log(1+T )

ff
isomorphism (check)

Example 3.4.8
ϕ = (ϕx(x, y), ϕy(x, y)) : E1 → E2 isogeny over K

induces Ê1 → Ê2 over K
ϕy(x(T ), y(T ))

ϕx(x(T ), y(T ))
∈ TK[[T ]]

3.5 Structure of formal groups

3.5.1 Filtration

R = O complete, m maximal ideal, F formal group over R, k = R/m

m ⊇ m2 ⊇ · · · sets

x, y ∈ mn ⇒ x⊕F y = x+ y︸ ︷︷ ︸
∈mn

+(something ∈ mn+1) ∈ mn
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F(m) ⊇ F(m2) ⊇ · · · subgroups

F(mn)/F(mn+1) ∼= (mn /mn+1,+) ∼= (k,+)

x ↔ x

So “F (like Ĝ a) is built up from pieces that look like k”

3.5.2 Invertible Homomorphism

(Work over any R)

Theorem 3.5.1
A homomorphism f(T ) = a1T + a2T

2 + · · · : F → F is an isomorphism ⇔ a1 ∈ R×

Proof
⇒:
f(g(T )) = T, g(T ) = b1T + b2T

2 + · · ·
f(g(T )) = a1b1T + · · · = T
⇒ a1b1 = 1
⇒ a1 ∈ R×

⇐:
Assume a−1

1 ∈ R, let g1(T ) = a−1
1 T

Want: Construct inductively unique gn(T ) = gn−1(T ) + λnT
n

s.t. f(gn(T )) ≡ T mod Tn+1

⇒ g := lim gn ∈ TR[[T ]] is unique g s.t. f(g(T )) = T

f(gn(T )) = f(gn−1(T ) + λnT
n)

≡ f(gn−1(T )) + a1λnT
n mod Tn+1

≡ T + bTn︸ ︷︷ ︸
by induction,
for some b∈R

+a1λnT
n mod Tn+1

Now let b+ a1λn = 0 i.e. λ := −b
a1
⇒ unique gn with f(gn(T )) ≡ T mod Tn+1 as required

Corollary 3.5.2
R = O complte, E1(K) has no elts of order m, i.e. no m-torsion, for char k - m (such m are in O×)

In general, we have

Corollary 3.5.3
[m] : F → F isom ⇔ m ∈ R×

Proof
[m](T ) = mT + · · · (by induction, true ∀m ∈ Z)

3.5.3 The Invariant Differential

R ring, F /R formal group
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Definition 3.5.4
A differential form ω=expression

f(X)dX , f ∈ R[[X]]

for a power series g in X
ω ◦ g := f(g(X))g′(X)dX

Definition 3.5.5
ω is an invariant differential of F /R

ω ◦ F(X,Y ) = ω

as a function of X.
i.e. if

f(F(X,Y )) · F ′
1(X,Y )︸ ︷︷ ︸

derivative 1st var.

dX = f(X)dX

ω is normalised if ω = (1 + · · · )dX (equivalently, f(0) = 1)

Example 3.5.6
ω = dX on Ĝ a

ω = (1 +X)−1dX on Ĝm

ω
Ê
= x′(w)dw

y(w) ; E : y2 = x3 + ax+ b

Proposition 3.5.7
Any F /R has a unique normalised invariant differential, namely

ωF := F ′
1(0, Y )−1dY

Every invariant differential on F is of form aωF some a ∈ R

Proof

F(X,F(Y, Z)) = F(F(X,Y ), Z)

∂/∂X⇒ F ′
1(X,F(Y, Z)) = F ′

1(F(X,Y ), Z) · F ′
1(X,Y )

Put X=0⇒ F ′
1(0,F(Y, Z)) = F ′

1(Y, Z) · F ′
1(0, Y )

⇒ ωF invariant
F ′

1(0, Y ) = 1 + · · · ⇒ normalised

Conversely, f(X)dX invariant
⇒ (by defn) f(F(X,Y ))F ′

1(X,Y ) = f(X)
⇒ (put X = 0) f(Y ) · F ′

1(0, Y ) = f(0)
⇒ f(Y )dY = f(0) · ωF

Corollary 3.5.8
f : F → G homomorphism, f(T ) = afT + · · · , (i.e. af = f ′(0)) then

ωG ◦ f = af · ωF

Proof

ωG ◦ f(F(X,Y )) = ωG(G(f(X), f(Y ))) (f hom.)

= ωG ◦ f (ωG invariant)

ωF unique ⇒ ωG ◦ f = constant ×ωF
constant = af
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Corollary 3.5.9
f, g : F → G hom. Then

ωG ◦ ( f ⊕ g︸ ︷︷ ︸
addition form

) = ωG ◦ f + ωG ◦ g

(as both equal (af +ag)ωF ) (This was left unproved in Theorem 2.2.25 for isogenies of elliptic curves)

Exercise: p prime, F /R formal group

[p](T ) = pf(T ) + g(T p) for some f, g ∈ TR[[T ]]

3.5.4 logF and expF

•R = K field of characteristic 0, F /R, ωF = (1 + a1T + · · · )dT

Definition 3.5.10

logF (T ) = “

∫
ωF” = T +

a1
2
T 2 +

a2
3
T 3 + · · · ∈ R[[T ]]

Proposition 3.5.11
logF : F → Ĝ a isomorphism of formal groups

Proof
Integrate ωF (F(X,Y )) = ωF (X) to X:

logF (F(X,Y )) = logF (X) + C(Y )

where C(Y ) ∈ R[[Y ]] const. of integration

X = 0 ⇒ C(Y ) = logF (Y ) ⇒ logF hom. to Ĝ a

Starts with 1 · T + · · · ⇒ isom (its inverse called expF )

•K complete wrt v : K× → Z, char K=0, R = O, m
Now logF , expF not necessarily defined over O (denominators!)
Analyse denominators carefully ⇒ still ok on mn for n large enough

Theorem 3.5.12

(1) logF : F(mr)
∼−→ Ĝ a(m

r) for r > v(p)
p−1

(2) If x ∈ F(m) has exact order pn then pn−1v(x) ≤ v(p)
p−1

Proof
See Silverman, IV 6.4, 61

Example 3.5.13
K = Qp, F /Zp
p odd ⇒ F(pZp)∼=(Zp,+) (1 > v(p)

p−1 = 1
p−1)

p = 2 ⇒ F(4Z2)∼=(Z2,+)

Example 3.5.14
Set F = Ĝm in the above example, we get:

(1 + pZp,×) ∼= (Zp,+) p odd

(1 + 4Z2,×) ∼= (Z2,+)

54



3.5.5 Consequences for all elliptic curves

WARNING: If E has minimal model y2 + a1xy + a3y = · · · (may be necessary if char k = 2 or 3)
then formulae for x(w), y(w),FE(X,Y ),

ωF =
x′(w)dw

2y(w) + a1x(w) + a3

more complicated than for y2 = x3 + ax+ b

E/K complete, K/Qp finite extension, v,O,m, k
Theorem 3.5.15
E(K) contains a subgroup of finite index isomorphic to (O,+) (even topologically)

Proof

E(K)
finite quot.
⊇ E0(K)

fin. ↪→ Ẽns(k)

⊇ E1(K) = Ê(m) ⊇ Ê(m2) ⊇ · · · ⊇ Ê(mr)∼=(O,+)

the containment on the RHS of the qual sign are all finite index, all quotient ∼=(m /m2)∼=(k,+)

Corollary 3.5.16
E(K)/mE(K) is finite for any m > 1

Proof
r large enough, as before

0 // Ê(mr) //

[m]
��

E(K) //

[m]

��

A

[m]

��

// 0

0 // Ê(mr) // E(K) // A // 0

(Note Ê(mr)∼=(O,+))
Kernel-cokernel exact sequence:

0 // O[m] // E(K)[m] // A[m] EDBC
GF@A

// O /mO // E(K)/mE(K) // A/mA // 0

(Top rows are kernels, bottom row are cokernels)
O /mO finite group of order (#k)v(m), A/mA finite
⇒ E(K)/mE(K) finite

3.6 Néron-Ogg-Shafarevich Criteria

K complete, p= char k, [K : Qp] <∞
Definition 3.6.1

Knr = maximal unramified extension of K

=
∪

(n,p)=1

K(µn) complete, residue field k

IK/K = Gal(K/Knr) inertia group

= ker(
Gal(K/K) → Gal(k/k)

σ 7→ σ̃
)
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(Also, IK , Iv)

K

Gal=IK/K

k

Knr

Gal∼=Gal(k/k)

π, vOO

same

��

k

K π, v k

A Gal(K/K)-module M is unramified if M Iv =M
i.e. σ(m) = m ∀m ∈M,σ ∈ IK/K
(i.e. Gal(K/K) acts on M through Gal(k/k) quotient)

Example 3.6.2
E/K elliptic curve, M = E[m]
F = K(E[m]) = K( coordinates of all m-torsion points) (this is finite Galois over K)

Then E[m] unramified ⇔ Iv acts trivially on E[m]
⇔ Iv acts trivially on F = K(E[m])
⇔ F ⊆ Knr

⇔ F/K unramified (in the sense vF |K× = vK)

Example 3.6.3
E/Qp : y2 = x3 − 77, M = E[2]

F = Qp(roots of x
3 − 77) = Qp(ζ3,

3
√
77) (this is unramified for p ̸= 3, 7, 11)

(note: bad primes for E/Q are 2, 3, 7, 11)

Theorem 3.6.4
E/K has good reduction, p=char k - m. Then

(1) mod p : E(K)[m] ↪→ Ẽ(k) is injective

(2) E[m] is unramified

Proof

(1) Good reduction ⇒ E = E0, Ẽns = Ẽ
and ker(mod p)=E1 = Ê has no torsion (recall, Corollary 3.5.2 [m] : Ê

∼−→ Ê for p - m)

(2) Let F = K(E[m]), P ∈ E[m], σ ∈ Iv
Q := σ(P ) ⇒ Q̃ = σ̃(P̃ )
σ̃ = 1 as σ ∈ Iv
⇒ (by (1)) Q = P , so E[m]Iv = E[m]

Remark. In particular, for number field K, E(K)[m] ↪→ Ẽ(k), this help us to determine an upper
bound for E(Q)tors

Theorem 3.6.5 (Criterion of Néron-Ogg-Shafarevich)
E/K, l ̸= p
E/K has good reduction ⇔ TlE unramified

Remark. This relates two seemingly unrelated things: reduction is a geometric property, and TlE is
purely representation theory
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Proof
⇒:
By Theorem 3.6.4 (2), all E[ln]Iv = E[lm], since TlE = lim←−E[ln]
⇒ TlE unramified as well

⇐:
If F := K(E[ln]) unramified extension over K
so E/K has good reduction ⇔ E/F does (Exercise)

To find such n, choose n large enough s.t. ln > 4, ln > v(∆E)
⇒ ln > [E(F ) : E0(F )] (Kodaira-Néron)
⇒ E[ln] ∩ E0[F ] not cyclic (E[ln], all defined over F , ∼=Z /ln Z×Z /ln Z)
⇒ Z /lZ×Z /lZ ⊆ E0(F )
⇒ (as l ̸= p, Ê has no l-torsion point) Z /lZ×Z /lZ ⊆ Ẽns(kF )
But, if E/F has bad reduction,

Ẽns(kF )∼= k×F , kF (
√
η)×/k×F︸ ︷︷ ︸

cyclic

, k+F︸︷︷︸
order = power of p

Corollary 3.6.6
E/K has potentially good reduction (recall, this is equivalent to v(j) ≥ 0)
⇔ E/F has good reduction over some finite F/K

⇔ TlE
IF/F = TlE some finite F/K

⇔ IK/K acts on TlE through a finite quotient (i.e. image of IK/K → Aut(TlE) is finite)

Exercise:
E/K has potentially good reduction. Then,

(1) if p ̸= 2, then E/K(E[4]) has good reduction

(2) if p ̸= 3, then E/K(E[3]) has good reduction

(3) IK/K acts on TlE through a group of order divides 24 (and 24 may occur when p = 2)

3.7 Elliptic curves over number fields

K number field, E/K elliptic curve
Main result:

Theorem 3.7.1 (Mordell-Weil)
E/K elliptic curve over number field
Then E(K) is a finitely generated abelian group

(Asked by Poincaré (1908), proved by Mordell over Q (1922), then proved by Weil for Jacobians over
number fields (1929), Lang-Néron proved for abelian varieties over finite generated fields)

Thus,
E(K)∼=Zr ⊕T

where T is (finite) torsion subgroup
r is the Mordell-Weil rank (or arithmetic rank for E/K)

Proof in 4 steps:

• Torsion is finite
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• Existence of a height function on E(K)
(e.g. ⇒ E(K)��∼=Q,R, . . .)

• Weak Mordell-Weil Theorem: E(K)/mE(K) is finite
(e.g. ⇒ E(K)��∼=Z⊕Z⊕ · · · sum for infinitely many times)

• The above 3 ⇒ E(K) finitely generated

3.7.1 Torsion

Notation:

E(K)tors =
∪
m≥1

E(K)[m]

all points of finite order, subgroup (this is the T in Mordell-Weil)

Theorem 3.7.2
E(K)tors is finite

Proof
p ⊆ OK any prime, K ⊆ Kp completion

For n large, Ê(mn
Kp

)∼=(Op,+) torsion-free
⇒ E(Kp)tors ↪→E(Kp)/(Op,+)
But E(K)tors ↪→E(Kp)tors and E(Kp)/(Op,+) finite (Theorem 3.5.15)

Theorem 3.7.3 (Cassels)
E/Q elliptic curve in Weierstrass form with ai ∈ Z
If P = (x, y) ∈ E(Q)tors
⇒ either x, y ∈ Z or x ∈ 1

4 Z, y ∈
1
8 Z

Proof
May assume E in global minimal model (proves stronger statement)
If p |denominator of x or y
then P ∈ E1(Q) = Ê(pZp)
But Ê(pZp)∼=(pZp,+) has no torsion for p odd, and

Ê(4Z2)∼=(4Z2,+) for p = 2 (⇒ P ∈ Ê(2Z2) \ Ê(4Z2))

Example 3.7.4
Equation y2 = (x− 5)x(x+ 5) has infinitely many solutions
Proof : (−5

9 ,
100
27 ) ∈ E(Q) must have infinite order

Torsion is generally well-understood:

Theorem 3.7.5 (Nagell-Lutz)
E/Q : y2 = x3 + ax+ b a, b ∈ Z
If O ̸= P (x, y) ∈ E(Q)tors, then

(1) x, y ∈ Z
(2) either 2P = O or y|4a3 + 27b2

Proof
See Silverman VIII 7.2

Theorem 3.7.6 (Mazur)

E/Q has E(Q)tors∼=

{
Z /nZ n ∈ {1, . . . , 10, 12}
or Z /2Z×Z /2nZ n ≤ 4
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Proof
Very hard (easy when j(E) ∈ Z, in example sheet)

Over number fields [K : Q] = d, |E(K)tors| ≤ C(d) (Merel)
Z /lZ ⊆ E(K)tors ⇒ l ≤ (3d/2 + 1)2 (Uesterl)

3.7.2 Heights over Q

Definition 3.7.7
For α = p

q ∈ Q, define HQ(α) = H(α) := max(|p|, |q|), called the height of α
hQ(α) = h(α) := logH(α) is logarithmic height

Example 3.7.8
H(23) small. H(2000130001) large
So the height is not measuring the size of number, but its arithmetic complexity

Properties:

• h(α) ≥ 0. Equality ⇔ α = ±1 or 0

• {α|h(α) < c} is finite
• h(αd) = dh(α), H(αd) = H(α)d

• Generally, if f(x) = anxn+···+a0
bmxm+···+b0 ∈ Q(x) is of degree d

(degree of Q(x) is max(m,n))
then h(f(α)) = dh(α) +O(1), i.e.

dh(α)− c ≤ h(f(α)) ≤ dh(α) + c for some c independent of α

Proof
α = p

q . Say n ≥ m (otherwise f ↔ 1
f ), so

f(
p

q
) =

anp
n + · · · a0qn

(bmpm + · · ·+ b0qm)qn−m
=:

A(p, q)

B(p, q)

has H(α) ≤ (n+1)maxi,j(|ai|, |bj |)max(|p|, |q|)n ≤ cH(α)deg f , hence the required upper bound

For the lower bound, A,B coprime ⇒ use Euclidean algorithm:

A(p, q)r(p, q) +B(p, q)s(p, q) = pNd1

A(p, q)r′(p, q) +B(p, q)s′(p, q) = qNd2

with A,B, r, r′, s, s′ ∈ Z[p, q] homogeneous, d1, d2,∈ Z
⇒ Cancellation in A(p, q)/B(p, q) is bounded by d1, d2
Triangle inequality ⇒ lower bound for max(|A|, |B|)

3.7.3 Heights over number fields

If K is a number field. ΣK set of places (i.e. normalized absolute values) on K

• | · |p :=
∣∣∣∣ 1

#kp

∣∣∣∣vp(·) for each prime ideal p ⊆ OK (finite places)

• | · |σ := |σ(α)| (usual real absolute value) for each σ : K ↪→R (real places)

• | · |σ = |σ(α)|2 for each pair σ ̸= σ K ↪→C (complex places)
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Definition 3.7.9
For α ∈ K

HK(α) :=
∏
v∈ΣK

max(1, |α|v) ∈ R≥1

hK(α) := logHK(α) ∈ R≥0

Example 3.7.10
K = Q

HK(
2

3
) = max

{∣∣∣∣23
∣∣∣∣ , 1} ·max

{∣∣∣∣23
∣∣∣∣
2

, 1

}
·max

{∣∣∣∣23
∣∣∣∣
3

, 1

}
· 1

= max

{
|numerator|
|denominator|

, 1

}
· |denominator| = max{|numer.|, |denom.|}

= same H as before

Example 3.7.11

K = Q(
√
5), α = 1+

√
5

2

HK(α) = max

{∣∣∣∣∣1 +
√
5

2

∣∣∣∣∣ , 1
}
·max

{
1−
√
5

2
, 1

}
· 1

=
1 +
√
5

2
= 1.61 . . .

Remark. For P = [α : β] ∈ P1(K) = K ∪ {∞}, can let

HK(P ) =
∏
v∈ΣK

max(|α|v, |β|v)

(Analogous for Pn(K))
Well-defined: HK([α : β]) = HK([cα : cβ]) as

∏
v |c|v = 1

as this is product formula in number fields:∏
v∈ΣK

|c|v =
∏
v∈ΣQ

|NK/Q(c)|v = 1

Remark. HK , hK depend on the choice of K, e.g., In Q : H(15) = 5

In Q(i) : HK(
1
5) = HK( 1

(2+i)(2−i)) = 52 = HQ(
1
5)

[Q(i):Q]

In Q(
√
5) : HK(15) = HK(

1
(
√
5)2

) = 52 = HQ(
1
5)

[Q(
√
5):Q]

Generally, α ∈ K ⊆ F
HF (α) = HK(NF/K(α)) = HK(α[F :K]) = HK(α)

[F :K] so,

Definition 3.7.12
The absolute height

H(α) := HK(α)1/[K:Q] , h(α) :=
1

[K : Q]
hK(α)

is independent of K ∋ α (i.e. is defined on Q)

Properties:

(1) {α ∈ K|h(α) < c} is finite
(2) h(f(α)) = deg f · h(α) +O(1) for f ∈ K(X)

(3) h(α) ≥ 0, equality ⇔ α root of unity or 0
Proof
⇐: All |α|v are 1 if α = 0 or root of unity
⇒: Proof I : α ∈ OK , |σ(α)| ≤ 1 ∀σ : K ↪→C ⇒ a root of unity or 0

Proof II : h(α) = 0 ⇒ {αn|n ∈ Z} have bounded height
⇒ finite set ⇒ two powers are equal ⇒ α = 0 or root of unity
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3.7.4 Heights of points on elliptic curves

Definition 3.7.13
E/K, P = (a, b) ∈ E(K), h(P ) := h(a)
height relative to x : E → P1

Properties:

Lemma 3.7.14

(1) h(mP ) = m2h(P ) +O(1) (the error depends on E/K and m but not P )
“x-coordinate of mP has ≈ m2 digits”

(2) {P ∈ E(K)|h(P ) < c} finite
(3) Parallelogram law: h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) +O(1) (error depends on E/K not

on P,Q)

Proof

(1)

E
[m] //

x
��

E

x
��

P1
ϕ // P1

[m] = (ϕ(x), ψ(x, y)) and deg ϕ = m2

⇒ h(mP ) = h(ϕ(x(P ))) = deg ϕ · h(x(P )) +O(1) = m2h(P ) +O(1)

(2) Finite many x-coordinate; ≤ 2 choices for y-coordinates for each

(3) Computation with addition law (see Silvermann III 6.2)

3.7.5 Canonical Height

Theorem 3.7.15 (Néron-Tate)
There is a unique function ĥ : E(K)→ R s.t.

(1) ĥ(P ) = h(P ) +O(1)

(2) ĥ(mP ) = m2ĥ(P ) ∀P ∈ E(K)

Proof
Uniqueness:

Let ĥ, ĥ′ be two such ⇒ |ĥ(P )− ĥ′(P )| ≤ 2C ∀P
⇒ |ĥ(2nP )− ĥ′(2nP )| ≤ 2C ∀
⇒ 4n|ĥ(P )− ĥ′(P )| ≤ 2C ∀P
⇒ as n→∞, ĥ = ĥ′

Existence:

ĥ(P ) := lim
n→∞

1

4n
h(2nP ) exists

an := 1
4nh(2

nP ) check

|an − am| ≤
∑n−1

i=m−n 4
−iC as m ≥ n both →∞ get an Cauchy sequence ⇒ converge

Finally, P 7→ 1
m2 ĥ(mP ) equals ĥ by uniqueness argument
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Lemma 3.7.16 (Properties of Canonical Height)

(1) ĥ = h+O(1)

(2) ĥ(mP ) = m2ĥ(P )

(3) {P ∈ E(K)|ĥ(P ) < C} finite
(4) Parallelogram Law: ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

(5) ĥ(P ) ≥ 0, and ĥ(P ) = 0 ⇔ P ∈ E(K)tors

Proof

(1) by definition

(2) by definition

(3) True for h ⇒ by (1), true for ĥ

(4) Replace P,Q by 2nP, 2nQ, divide by 4n, let n→∞

(5) ≥ 0: ĥ := limn→∞
1

4n
h(· · · )︸ ︷︷ ︸
≥0

⇐: (1 +m)P = P
⇒ (m+ 1)ĥ(P ) = ĥ(P )
⇒ ĥ(P ) = 0

⇒: {P, 2P, 3P, . . .} all have height 0⇒ finite set

Theorem 3.7.17 (Néron-Tate Pairing)

E(K)× E(K) → R
(P,Q) 7→ ⟨P,Q⟩ = ĥ(P +Q)− ĥ(P )− ĥ(Q)

is bilinear, i.e. ĥ is a quadratic form

Proof
Formal consequences of the parallelgoram law and ĥ(P ) = ĥ(−P )

Property (4) for P +R,Q
− Property (4) for P −R,Q
+ Property (4) for P +Q,R
−2× Property (4) for R+Q,R−Q
⇒ ⟨P +R,Q⟩ = ⟨P,Q⟩+ ⟨R,Q⟩

Remark. ⟨ , ⟩ can be used to get a lower bound on the Mordell-Weil rank

Example 3.7.18
E/Q, say P1 = (2, 3), P2 = (14 ,

1
8) ∈ E(Q)

say the height pairing matrix is: (
⟨P1, P1⟩ ⟨P1, P2⟩
⟨P2, P1⟩ ⟨P2, P2⟩

)
=

(
5.3 3.1
3.1 4.0

)
has determinant ̸= 0
⇒ P1, P2 ∈ E(Q) are linear independent over Z
⇒ rkZE(Q) ≥ 2
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Remark. Theorem + Property (3) ⇒ (see Silverman III 9.5) ĥ positive definite quadratic form
on E(K) ⊗ R (a finite dimensional R vector space as tensor over Z with R kills the torsion) once we
know E(K) is finitely generated

Definition 3.7.19
The regulator of E(K) = ZP1 ⊕ ZP2 ⊕ · · · ⊕ ZPr⊕(finite) is

det (⟨Pi, Pj⟩1≤i,j≤r) = R ∈ R>0

Independent of choice of a basis

3.7.6 Descent

Theorem 3.7.20 (Descent Theorem)
K number field E/K elliptic curve
If E(K)/mE(K) is finite for some m ≥ 2
Then E(K) is finitely generated

Proof
Let P1, . . . , Pn ∈ E(K) be representatives for E(K)/mE(K),

M = max
i
ĥ(Pi)

Claim: E(K) is generated by S = {R ∈ E(K) of height ĥ(R) ≤M}
Proof of Claim:
(note S is a finite set)
If not, let P ∈ E(K) be a point of smallest height not in span(S)
Write P = mQ+ Pj

⇒ m2ĥ(Q) = ĥ(mQ) = ĥ(P − Pj)
≤ 2 ĥ(P )︸ ︷︷ ︸

>M

+2 ĥ(Pj)︸ ︷︷ ︸
≤M

< 4ĥ(P )

≤ m2ĥ(P ) (as m ≥ 2)

⇒ ĥ(Q) < ĥ(P )
⇒ Q ∈ Span(S)
⇒ P ∈ Span(S) # �

Remark. All bounds and constants in O(1)’s can be made explicit. So if one knows how to find
generator for E(K)/mE(K) for some m ≥ 2, get generators for E(K) (but no such algorithm has
been known)

3.8 Group Cohomology

Motivation:

0→ E[m]→ E(K)
[m]
� E(K)→ 0
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Note for the multiplication bym map E(K)�E(K), every point has m2 preimages, over algebraically
closed field ⇒ E(K)/mE(K) = 0

Take Gal(K/K)-invariants ⇒ exact sequence:

0→ E(K)[m]→ E(K)
[m]−−→ E(K)

Failure to be exact on the right is measured by

coker([m] : E(K)→ E(K)) =
E(K)

mE(K)

In general, say G is a group

Definition 3.8.1
A (left) G-module is an abelian group M with an action of G given by a group homomorphism

G → Aut(M)

g 7→ (m 7→ mg)

group hom. ⇔
{
m1 = m ∀m
mgh = (mh)g ∀m e.g.: σ, τ ∈ Gal(K/K), P ∈ E(K) ⇒ P τσ = (P σ)τ

G-invariants
MG := {m ∈M |mg = m ∀g ∈ G}

The functor

G-modules → G-module

M 7→ MG

is left-exact but not right-exact, i.e. 0→ A→ B
ψ−→ C → 0 ses of G-modules ⇒

0→ AG → BG ψ−→ CG exact (easy to check)

Why BG���CG in general?
Take c ∈ CG, B�C ⇒ ∃b s.t. ψ(b) = c

ξ : G → B

g 7→ bg − b

(ξ = 0 ⇔ bg = b ∀g)
The map ξ lands in A ⊆ B, since:

ψ(bg − b) = ψ(b)g − ψ(b) = 0 ⇒ bg − b ∈ kerψ = Im(A ↪→B)

and satisfies
ξ(gh) = bgh − b = (bh)g − bg + bg − b = ξ(h)g + ξ(g)

ξ is called the crossed homomorphism G→ A or 1-cocylce

Choosing another preimage b′ ∈ ψ−1(c) (so b′ = b+ a some a ∈ A) changes

ξ → ξ′ = ξ + (map g 7→ ag − a)︸ ︷︷ ︸
1-coboundary
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Definition 3.8.2
M a G-module

H0(G,M) := MG 0th cohomology group

H1(G,M) :=
1-cocycles

1-coboundary
1st cohomology group

=
{ξ : G→M |ξ(gh) = ξ(g) + ξ(h)g}

{maps of form g 7→ mg −m some m ∈M}

ϕ :M → N map of G-modules indcues H1(G,M)→ H1(G,N) *by composing G
ξ−→M

ϕ−→ N
If G acts trivially on M (mg = m ∀g,m), then

H1(G,M) =
{ξ|ξ(gh) = ξ(g) + ξ(h)}

{0}
= Hom(G,M)

We constructed a map δ : CG → H1(G,A) with

ker δ = {c ∈ CG|ξ : g 7→ bg − b = 0, b ∈ ψ−1(c)} = ψ(BG)

Generally, we have:

Proposition 3.8.3
ses of G-modules 0→ A→ B → C → 0 induces a long exact sequence of abelian groups:

0 // AG // BG // CG EDBC
GF δ@A

// H1(G,A) // H1(G,B) // H1(G,C) // · · ·

(the sequence continues to H2(G,A) etc. note that H2(Gal(K/K),K
×
) Brauer group, important in

class field theory and central simple algebras)

Proof
Define maps, checked. Exactness at CG, checked. Exactness elsewhere, not hard

3.8.1 Galois Cohomology

GK = Gal(K/K) with K perfect

Definition 3.8.4
A GK-module M is continuous if ∀m ∈ M , StabGK

m < GK is Gal(K/Lm) for some Lm/K finite
extension

(this actuallly means GK ×M → M is continuous if M is given discrete topology and GK profinite
topology - Gal(K/L)’s fundamental system of open nbhds of id)

Example 3.8.5
K,K

×
, E(K)

Definition 3.8.6
For continuous GK-modules, define

• H0(GK ,M) :=MG as before
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• H1(GK ,M) :=

{
cts 1-cocycles ξ : G→M s.t.

∀m ∈M ξ−1(m) = Gal(K/L) some L/K finite

}
{1-coboundaries}

(1-coboundaries are continuous automorphism)

• same long exact sequence as before

Theorem 3.8.7
If µm ⊆ K then

K×/(K×)m ∼= H1(GK , µm) (= Homcont.(GK , µm))

b
δ7→ (σ 7→ ( m

√
b)σ

m
√
b

)

This is the Kummer map

Proof
0→ µm → K

× x7→xm−−−−→ K
× → 0 induces

0→ µm → K× → K× δ−→ H1(GK , µm)→ H1(GK ,K
×
), extract:

0→ K×/K×m δ
↪→ H1(GK , µm)→ H1(GK ,K

×
)

for some δ as claimed by definition of connecting homomorphism

To prove δ surjective, either (1) prove H1(GK ,K
×
) = 0 “Hilbert ’90 Theorem” (this theorem proves

for even when µm * K)
or (2) Take ξ ∈ H1(GK , µm) = Homcont(GK ,Z /mZ),
ker ξ = GL, L/K finite Galois by continuity,

ξ : Gal(L/K) ↪→Z /mZ

By Kummer theory, any such L is K( m
√
b), some b ∈ K× (as µm ⊆ K)

3.9 Weak Mordell-Weil a lá Mordell

K number field, E/K, our goal is to show E(K)/2E(K) finite (Weak Mordell-Weil). The plan for
achieving the goal is as follows:

E/K : y2 = (x− t1)(x− t2)(x− t3), ti ∈ K
Q1: Why may assume E[2] ⊆ E(K)

Define the Kummer map

κ : E(K) → (K×/K×2
)× (K×/K×2

)× (K×/K×2
)

P 7→ (κ1(P ), κ2(P ), κ3(P ))

E[2] ̸∋ (x, y) 7→ (x− t1, x− t2, x− t3) (NB: Product of 3 is 1∈ K×/K×2
)

O 7→ (1, 1, 1)

(t1, 0) 7→ ((t1 − t2)(t1 − t3), t1 − t2, t1 − t3) (similarly for (t2, 0), (t3, 0))

This is a group homomorphism with kerel 2E(K), so,
Q2: Why?

E(K)/2E(K) ↪→ (K×/K×2
)× (K×/K×2

)
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(say κ = (κ1, κ2))
The image is trivial at primes p - 2∆E , so
p - 2 prime of good reduction ⇒ vp(κi(P )) ≡ 0 mod 2, and so
Q3: Why?

Then proves E(K)/2E(K) finite
Q4: Why?

Example 3.9.1

Q× /Q×2 1:1↔ square-free integers

5 7→ 5

5 ·
(
7

8

)2

7→ 5

−2

3
7→ −6

i.e. Q× /Q×2
is a F2-vector space with basis −1, 2, 3, 5, 7, . . .

3.9.1 Example of 2-descent

E/Q y2 = x(x+ 3)(x− 6)
Goal: Determine the structure of E(Q)

Step 1: Determine torsion subgroup

• ∆ = 2638 minimal at all primes as vp(∆) < 12 ∀p
• {T1 = (0, 0), T2 = (−3, 0), T3 = (6, 0),O} = E[2] ⊆ E(Q) ⇒ #E(Q)tors ≥ 4

#Ẽ(F5) = 8

#Ẽ(F7) = 12

}
⇒ #E(Q)tors ≤ 4 (by Theorem 3.6.4)

⇒ #E(Q)tors = 4

Step 2: Exploit structure using Kummer map

A search for points of small height (H ≤ 2, i.e. points with x-coordinates ∈ {0,±1,±2,±1
2}) yields

P = (−2, 4) ∈ E(Q)

Kummer map: x x+ 3 x− 6

O 1 1 1
T1 = (0, 0) -2 3 -6
T2 = (−3, 0) -3 3 ��−9,−1
T3 = (6, 0) 6 1 6
P = (−2, 4) -2 1 -2
P + T1 = (9, 18) 1 3 3
P + T2 = (24,−108) 6 3 2
P + T3 = (−3

4 ,−
27
8 ) -3 1 -3

2P = (12116 ,−
715
64 ) 1 1 1(∗)

(∗): Kernel of the Kummer map is precisely 2E(Q), see later

vp(all entries)=0 for p - 2∆E = 2738

⇒ all entries ∈ {±1,±2,±3,±6} 8 choices
⇒ E(Q)/2E(Q) has order ≤ 82 = 64 = 26, hence finite
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So Descent Theorem 3.7.20 ⇒ E(Q) finitely generated abelian group

E(Q)∼=Zr ⊕Z /2Z⊕Z /2Z for some r ≥ 1 (r ̸= 0 because of P = (−2, 4))

This has
E(Q)

2E(Q)
∼=(Z /2Z)r+2 order ≤ 26

⇒ r ≤ 4. We now bound r further by local analysis.

Over R:
x+ 3 ≥ 0 ∀(x, y) ∈ E(Q) (can be easily seen by draw a picture)
i.e. the second entry of Kummer map is always ≥ 0

In other words, consider

E(Q)/2E(Q)

��

� � κE/Q //Q× /Q×2 ×Q× /Q×2

��
E(R)/2E(R) � � κE/R //R× /R×2 × R× /R×2

= {±1} × {±1}

E(R)/2E(R) =
Z /2Z×S1

{1} × S1
= Z /2Z

κE/Q(O) = (1, 1) κE/Q(0, 0) = (−1, 1)
(This shows that twice of a point always lies on a component of graph)
⇒ Im(κE/Q) ⊆ { anything } × { positive } because Im(κE/R) is. ))

Over Q2:
Compute E(Q2)/2E(Q2)∼=(Z /2Z)m some m ≥ 1
E : y2 = x3 − 3x2 − 18x
Ẽ/F2 : (y + x)2 = x3 (additive reduction at 2)
Ẽ(F2) = {O, (1, 0), (0, 0)}, (0,0) singular, others non-singular
⇒ Ẽns(F2) = {O, (1, 0)}∼=(F2,+) (Ĝ a(F2))

The Néron component group: E(Q2)/E0(Q2)∼=Z /2Z generated by (0, 0) ∈ E(Q2) (as (̃0, 0) singular)

(Tate’s algorithm; or directly as in Exercise 52 prove:

if Q̃ = (0, 0) = Q̃′, then Q̃+Q′ ∈ Ẽns(F2))

3 steps:
Step 1:

0 // E0(Q2) //

[2]
��

E(Q2) //

[2]
��

E(Q2)/E0(Q2) //

[2]
��

0

0 // E0(Q2) // E(Q2) // E(Q2)/E0(Q2) // 0

Kernel-cokernel exact sequence:

0 // E0(Q2)[2] // E(Q2)[2] // Z /2Z // E0(Q2)
2E0(Q2)

// E(Q2)
2E(Q2)

// Z /2Z // 0

0 // Z /2Z
⟨(−3, 0)⟩

// Z /2Z+Z /2Z
⟨((0, 0), (−3, 0))⟩

// //Z /2Z
⟨(0, 0)⟩

zero // A
� � // B // Z /2Z // 0

Exactness at ⟨(0, 0)⟩ and A ⇒

0→ E0

2E0
→ E

2E
→ Z /2Z→ 0
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Step 2:
0→ E1(Q2)→ E0(Q2)→ Ẽns(F2)→ 0

Ẽns(F2)∼=Z /2Z gen. by (1, 0) (the image of (−3, 0) under reduction map)
Kernel-cokernel exact sequence for [2] again:

0 // E1(Q2)[2] // E0(Q2)[2] // Ẽns(F2)[2]
// E1(Q2)
2E1(Q2)

// E0(Q2)
2E0(Q2)

// Z /2Z // 0

0 // 0 // Z /2Z
⟨(−3, 0)⟩

∼= //Z /2Z
⟨(1, 0)⟩

zero // C
� � // D // Z /2Z // 0

and get ))

0→ E1

2E1
→ E0

2E0
→ Z /2Z→ 0

Step 3:
E1(Q2)∼= Ê(2Z2) formal group,

0 // Ê(4Z2)
//

∼=

Ê(2Z2)
// Ê(2Z2)

Ê(4Z2)
//

∼=

0

(Z2,+) 2Z2
4Z2

∼=Z /2Z

( Ê(2Z2)

Ê(4Z2)
∼= 2Z2

4Z2
as, from section 3.5.1, F(mn)/F(mn+1)∼=(mn /mn+1,+)∼=(k,+))

The last Z /2Z is generated by P + T3 (any point with v2(x-coord)=-2)

Kernel-cokernel exact sequence for [2] ⇒ :

0 // 0 // 0 // Z /2Z // Z2 /2Z2
// Ê(2Z2)

2Ê(2Z2)
// Z /2Z // 0

So we get
E1/2E1

∼=Z /2Z

Combine all 3 steps ⇒
E(Q2)

2E(Q2)
∼=Z /2Z×Z /2Z×Z /2Z

generated by (T1, T2, P + T3) = ((0, 0), (−3, 0), (−3
4 ,−

27
8 ))

Because Q×
2 /Q

×
2
2∼=(Z /2Z)3 with representatives {±1,±2,±3,±6}

E(Q)/2E(Q) � � //

��

{±1,±2,±3,±6} × {±1,±2,±3,±6}

E(Q2)/2E(Q2)
� � // (Q×

2 /Q
×
2
2
)× (Q×

2 /Q
×
2
2
)

the image of κE/Q has size at most |E(Q2)/2E(Q2)| = 8 ⇒ r ≤ 1 ⇒ r = 1

We proved:
E/Q : y2 = x(x+ 3)(x− 6) has E(Q)∼=Z×Z /2× Z /2))
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3.9.2 Proof of (Weak) Mordell-Weil Theorem

Theorem 3.9.2 (Weak Mordell-Weil Theorem)
K number field, E/K elliptic curve, m ≥ 2, then,

E(K)/mE(K) finite

Corollary 3.9.3 (Mordell-Weil Theorem)
E(K) is finitely generated

Proof
Weak Mordell-Weil + Descent Theorem

Proof of Weak Mordell-Weil Theorem
Each of the step in this proof is to answer each question stated at the start of the section, in the plan
for proving Weak Mordell-Weil

Step 1
F := K(E[m]). If we show E(F )/mE(F ) is finite, then E(F ) finitely generated
⇒ E(K) ↪→E(F ) ⇒ E(K) also f.g.

Thus, replacing K by F , may assume E[m] ⊆ E(K) (⇒ µm ⊆ K Exercise)

Step 2

Take GK = Gal(K/K)-cohomology of

0→ E[m]→ E(K)
[m]−−→ E(K)→ 0

Get

0→ E[m]→ E(K)
[m]−−→ E(K)

δ−→ H1(GK , E[m])→ H1(GK , E(K))
[m]−−→ H1(GK , E(K))→ · · ·

Extract

0→ E(K)

mE(K)

δ−→ H1(GK , E[m])→ H1(GK , E(K))[m]→ 0

Kummer sequence for elliptic curve

δ(P ) = (σ 7→ Qσ −Q) for any Q ∈ E(K) s.t. mQ = P

Now,

Homcont︷ ︸︸ ︷
H1( GK , E[m]︸ ︷︷ ︸

Z /m×Z /m

) = H1( GK , µm︸︷︷︸
Z /m

)×H1( GK , µm︸︷︷︸
Z /m

)∼=K×/K×m ×K×/K×m (3.9.1)

The first equality is due to Weil pairing, explicitly:
Let E[m] = Z /mZT1 ⊕ Z /mZT2, have two Weil pairings:

E[m] → µm

α1 : T 7→ em(T, T1)

α2 : T 7→ em(T, T2)

and
(α1, α2) : E[m]

∼−→ µm × µm
becuase em bilinear, non-degenerate.
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The isomorphism in the ses (3.9.1) is due to Kummer map in Theorem 3.8.7, and we now construct:

κ = (κ1, κ2) : E(K)/mE(K) ↪→K×/K×m ×K×/K×m (3.9.2)

which is a group homomorphism, given by κi = H1(αi) ◦ δ

(Exercise: For m = 2, use definition of em (relies on function f s.t. div(f) = 2(T ) − 2(O) e.g.
f = x− xT ) to show κ = (x− x(T1), x− x(T2)) for m = 2)

Step 3
Let p - m∆E be a prime of good reduction, Kp completion, valuation vp, residue field k (finite)
Knr
p maximal unramified extension, same valuation, residue field k

Claim: E(Knr
p )/mE(Knr

p ) = 0

Proof of Claim:
(Note: E = E0, Ẽ = Ẽns, good reduction at P )

0→ E1(K
nr
p )→ E(Knr

p )→ Ẽ(k)→ 0

Kernel-cokernel exact sequence for [m] ⇒

· · · →
E1(K

nr
p )

mE1(Knr
p )︸ ︷︷ ︸

=0

→
E(Knr

p )

mE(Knr
p )
→ Ẽ(k)

mẼ(k)︸ ︷︷ ︸
=0

→ 0

exact sequence.
First cancelling due to: p - m ⇒ [m] isom of formal groups
Second cancelling due to: Ẽ elliptic curve over algebraically closed field ⇒ [m] surjective
⇒ the middle group is zero; proves the claim �

Now consider the following commute diagram

E(K)/mE(K)

��

� � κ // K×/K×m ×K×/K×m

��

((((((((((
E(Knr

p )/mE(Knr
p )=0 � � // (Knr

p )×/(Knr
p )×

m × (Knr
p )×/(Knr

p )×
m

⇒ Im(κi) are elements of K× which are in (Knr
p )×

m

In particular, they have vp, which is same on K and Knr
p , multiple of m

We proved vp(κi(P )) ≡ 0 mod m ∀p - m∆E))

Step 4
Let p, . . . , pn be prime divisors of m∆E

Claim: Hp1,...,pn = {α ∈ K×/K×m|vp(α) ≡ 0 mod m ∀ p ̸= p1, . . . , pn} is finite
Proof of Claim:
Enough to show

Hp1,...,pn−1
= ker(Hp1,...,pn

vpn−−→ Z /mZ)

is finite. Inductively, need that

H∅ = {α ∈ K×/K×m|vp ≡ 0 mod m∀ p}
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For α ∈ H∅,

(α)︸︷︷︸
ideal⊆OK

=
∏
p

pmnp =

(∏
p

pnp

)m
=: Imα

So enough to show

U = ker

(
H∅ → class gp of OK
α 7→ Iα

)
is finite. (note the class group is finite)

For α ∈ U, Iα = (xα) principal (as it is in the principal ideal class)
⇒ (α) = (xmα ) ⇒ α

xmα
∈ O×

K

If α
xmα

= um ∈ (O×
K)

m

⇒ α = (uxα)
m ∈ K×m (i.e. trivial element in U). So

U ↪→ O×
K /O

×
K
m

α 7→ α

xmα

Note O×
K /O

×
K
m

is finite, since O×
K is finite generated (by Dirichlet Unit Theorem, c.f. Algebraic

Number Theory course) �

Given claim ⇒ E(K)/mE(K) ↪→Hp1,...,pn ×Hp1,...,pn
⇒ DONE

Remark. Same strategy works for many finitely generated field (e.g. Q(t1, t2),Fq(t), . . .)
Remark. To actually find E(K)/mE(K) is hard:
There may be classes in H1(GK , E[m]) that are in the image of E(Kv)/mE(Kv) for all places v, but
not the image of E(K)/mE(K)
The “Local-Global Principle” (Hasse Principle) may fail for elliptic curve.

Example 3.9.4
y2 = x(x+ 3)(x− 6) over Q, m = 2
Here the local-global principle works

If the local-global principle does work, can find E(K)/mE(K) and therefore can find E(K)

Remark. In practice, m = 2 (may be m = 3, just)
A general E/Q would have, e.g. for m = 3, Gal(Q(E[3])/Q)∼=GL2(F3)
And Q(E[3]) is too large to compute its class group, unit group in practice.
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Index

(m,⊕F ), 52
Ga, 21
Gm, 21

Abel-Jacobi map, 21
absolute value

non-Archimedian, 49
algebraic group, 20
arithmetic rank, see Mordell-Weil rank
automorphism group, 19

canonical class, K, 13
coboundary

1, 67
cocycle

1, 67
cohomology group, 67
compact manifold of dim 1, 30
complete, 49
complete linear system, L(D), 13, 31
Completion K̂, 49
complex multiplication, 23

by R = End(E), 38
Complex Uniformization Theorem, 30
conductor, 38
continuous GK module, 68
Criterion of Néron-Ogg-Shafarevich, 59
crossed homomorphism, 67
curve

universal, 30
Curve C defined over perfect field K, 39

differential
rational, 13

differential form, 55
invariant, 55
normalised, 55

divisor
Div0(C), 8
disjoint, 41
divisor degree, 8
group, 8
of differential, 13
on curve, 8

divisor of function, 11

Ê, 52

Ens(k), 46
Eisenstein series, G2k(Λ), 32
elliptic curve, 16

over K, 40
elliptic function, 31
elliptic integral, 35

F(m), 52
fϕ, 42
formal group, 52
fractional ideal, 38
Frobenius map, 9
fundamental group π1(X), 30

G-invariant, 66
G-module, 66
genus of curve, 14

H, Upper Half Plane, 38
Hasse Theorem, 44
Hasse-Weil Inequality, 44
height, 61

absolute, 63
logarithmic, 61
relative, 63

Hensel’s Lemma, 49
HomK(E1, E2), 40
homomorphism

of formal groups, 52
hyperelliptic, 17

imaginary quadratic field K, 38
order in K, 38

inertia group, 58
inseparable

extension, 10
purely inseparable, 10

invariant differential, 24
isogeneous, 26
isogeny, 21

dual, 26
zero isogeny, 21

j-invariant, 18
Jacobian, Jac(C), 21

K-rational divisorrs, 39
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K-rational functions, 39
K-rational isogenies, 40
K-rational maps, 39
K-rational points, 39
Knr, 58
Kummer map, 68
Kummer sequence, 72

l-adic integer, 28
l-adic Tate module, 28
Laurent expansion

of meromorphic function, 31
Legendre form, 47
Limit in K, 49
linear equivalent, 11

m-torsion subgroup, 40
Mazur Theorem, 61
meromorphic function, 31
minimal model, 45

global, 46
Mordell-Weil

rank, 60
Theorem, 60

morphism, 6
degree, 6

multiplication-by-m map, [m], 22

Néron component group, 50
Néron-Tate Pairing, 65
Néron-Tate Theorem, 64
Nagell-Lutz Theorem, 61
non-singular

at P , 6
curve, 7

order of vanishing at a, orda f , 31

perfect field, 39
Picard group, Pic0 and Pic, 11
places, 62

complex, 62
finite, 62
real, 62

point at infinity, 16
principal divisor, 11

quadratic form, 27
positive-definite, 27

ramification index, 8
ramified, 8
rational map, 6

defined at P , 6
rational points

set of, C(K), 39

reduced curve, 45
Reduction

Bad
Additive, 46
Multiplicative, 46

Good, 46
potentially good, 46
potentially multiplicative, 46
type, semistable, 46
type, unstable, 46

reduction type, 50
regular

differential, 13
regulator, 65
residue at a, resa f , 31
Riemann Existence Theorem, 30
Riemann-Roch Theorem, 14

separable
extension, 10
morphism, 11
separable degree, 10

smooth curve, 7
strong triangle inequality, 49

torsion group, 28
torsion points, see torsion group
translation maps, 20

uniformiser, 7
unramified module, 58

valuation, 7
of differentials, 13

Weierstrass ℘-function, 32
Weierstrass equation

integral, 45
Weierstrass form

generalised, 16
simplified, 16

Weil pairing, 41
Weil reciprocity, 42

Zeta-function, 43
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