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Introduction

In their paper [0T12], Oppermann and Thomas introduce two
representation-theoretic frameworks relating cyclic polytopes and
higher Auslander—Reiten theory:

® the d-cluster-tilting subcategories of the module categories of
the higher Auslander algebras of type A,

® the (d+ 2)-angulated cluster categories of the higher
Auslander algebras of type A.

In [Wil], a third representation-theoretic framework was
introduced:

® the d-almost positive categories of the higher Auslander
algebras of type A.

In this talk, we describe these three frameworks, and make precise
the relationship between them using d-exangulated categories.
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1. Preliminaries



Approximations

We require subcategories to be full and closed under isomorphism.

Given a subcategory X of an abelian category A and a map
f: X— M, where X € X and M € A, we say that fis a right
X-approximation if for any X € X, the sequence

Hom 4 (X', X) — Hom4 (X', M) — 0

is exact.

This means that Hom4(—, M): X — Ab is a finitely generated
contravariant functor, since there is an epimorphism
Homy (—, X) — Homy(—, M).

Dually, g: M — Xis a left X-approximation if for any X' € X, the
sequence
Hom 4(X, X') — Hom4(M, X') — 0

is exact.



Functorial finiteness, generation, and cogeneration

The subcategory X is said to be contravariantly finite if every
M € A admits a right X-approximation, and covariantly finite if
every M € A admits a left X'-approximation.

If X is both contravariantly finite and covariantly finite, then X is
functorially finite.

The subcategory X is generating if, for any M € A, there is an
epimorphism p: X = M, where X € X.

The definition of cogenerating is dual to this.



2. d-abelian categories



2.1. Theory



Higher Auslander—Reiten theory: abelian categories

Introduced by lyama as a higher-dimensional generalisation of
classical Auslander—Reiten theory.

Given an abelian category A, a functorially finite
generating—cogenerating subcategory M of A is called
d-cluster-tilting if
M ={Xe A:YMe M,Ext; (X, M) = 0}
= {Xe A:YMe M,Exty 9 (M, X) = 0}.



d-abelian categories

Introduced by Jasso as the higher analogue of abelian categories
[Jas16].

Theorem ([Jas16; Kva2l; EN20])

1. A d-cluster-tilting subcategory of an abelian category is
d-abelian.

2. Any d-abelian category is equivalent to a d-cluster-tilting
subcategory of an abelian category.



Higher Auslander—Reiten theory: finite-dimensional
algebras

Now, let A be a finite-dimensional algebra over a field K.

A d-cluster-tilting subcategory of mod A must contain the
projectives and injectives, and so is automatically generating and
cogenerating. Hence, one can drop this condition.

If add M is a d-cluster-tilting subcategory of mod A for some
A-module M, then M is called a d-cluster-tilting module.

If A has a d-cluster-tilting module M, then A is called
d-representation-finite [|O11].

If, furthermore, A has gl.dim A < d, then A is called
d-representation-finite d-hereditary [HIO14].



Auslander correspondence

An Auslander algebra T is an algebra with
gl.dimI' < 2 < dom.dimT.

Given a minimal injective resolution
O=-T—>h—h——1lr—...
dom.dimI' = {k: [; is projective ,V0 < i < k}.

Theorem (Auslander correspondence, [Aus71])

There is a bijection between Morita-equivalence classes of
representation-finite algebras and Morita-equivalence classes of
Auslander algebras.

If A is a representation-finite algebra with M the sum of the
indecomposable A-modules, this bijection is given by

A — Endpy M.



Higher Auslander correspondence

A d-Auslander algebra T" is an algebra with
gl.dimI' < d+ 1 < dom.dimT.

Theorem (Higher Auslander correspondence, [lya07al)

There is a bijection between Morita-equivalence classes of
d-representation-finite algebras and Morita-equivalence classes of
d-Auslander algebras.

If A is a d-representation-finite algebra with M a d-cluster-tilting
A-module, this bijection is given by

A — Endpy M.



d-Auslander—Reiten formulas

There is a higher Auslander—Reiten translate, defined by
Ty =1QIL.

We get higher Auslander—Reiten formulas, analogous to the
classical ones.

Theorem ([lya07b])
For M, N € M, a d-cluster-tilting subcategory of mod A, we have

Ext4 (M, N) = DHom, (1, * N, M) = DHom (N, 74M).



2.2. Tilting modules



Tilting modules: definition

Tilting modules of projective dimension one were defined by
Brenner and Butler [BB80] as a generalisation of BGP reflection
functors [BGP73; APR79].

Miyashita defined tilting modules of higher projective dimension
[Miy86].

This was in turn generalised by Cline, Parshall, and Scott, whose
definition we use here [CPS86, Definition 2.3].

Given a A-module T, we say that T is a tilting module if:
1. the projective dimension of T is finite;
2. Extix(T, T) =0 for all i > 0; that is, T is rigid,

3. there is an exact sequence 0 > A —> Top —--- = Ts—0
with each T, € add T.



Tilting modules: motivation

The main motivation for studying tilting modules comes from the
following theorem.

Theorem ([Hap88, gl. dim A < 0o][CPS86, gl. dim A = o¢])

If T is a tilting A-module, then there is a derived equivalence

DP(mod A) ~ DP(mod End, 7).



2.3. The higher Auslander algebras of type A



Higher quivers of type A
Following [0T12],

m .
19 .= {{ao,...,ad} IS <d{+]1) :Vie[d,a > a1 +2}
Let Q@M be the quiver with vertices
(d,n) _ qd-1
Q" = L 2d2

and arrows

di’") ={A—=0i(A): AciA) e Q[()d’n) 1,

where
oi(A) :={ao,a1,...,ai-1,ai+1,a11,. .., ad}.
Q(1:3) Q(2:3) Q(3:3)
3 15 137 —> 147 —> 157
/! AN s AN Y
2 14 25 136 — 146 247 — 257
/! AN AN Ve NN N

1 13 24 35 135 246 357



Higher Auslander algebras of type A
Let A9 be the quotient of the path algebra KQ@") by the relations:

A = 0i(A) = 0j(0i(A)) = {A — 0j(A) - oj(ci(A)) g‘tﬁé(rc\v)lsg QL™

We multiply arrows as if we were composing functions, so that

i)&z Ba.

Theorem ([lyall])

A9 is d-representation-finite d-hereditary with unique basic

d-cluster-tilting module M@ and

End pg M(®7) 22 AT

One can do something similar in other Dynkin types, but it is more
complicated.



Higher Auslander algebras of type A: derived equivalence

Theorem ([Bec; DJL21])
The algebras A%, , | and AZ;? are derived equivalent; that is,

DP(mod A, 4_;) = D°(mod A7 ¢).

For example, AL = AL, , is derived equivalent to A = A}, ].

14
7N
24

1—2—3 13



The d-cluster-tilting subcategory of mod A% example
If we label Q%?2) as

14 2
SN — N
13 24, 1 3,

then this has Auslander—Reiten quiver.

2 3
PANEYAAN
1 2 3
The 2-cluster-tilting subcategory of mod Ag is given by

2 3
1 2

/ N\

1 3



2.4. Combinatorial description



The d-cluster-tilting subcategory of mod A¢

Theorem ([OT12, Theorem 3.6])
There is a bijection A — My between I‘,{ og and the
indecomposables of add M(%" such that:

1. My is projective if and only if ag = 1.

2. My is injective if and only if ag = n+ 2d.

3. Homua(Mp, Ma) # 0 if and only if (B— 1)1 A, and in this
case the Hom-space is one-dimensional;

4. Extad(Mg, Ma) # 0 if and only if A} B, and in this case the
Ext-space is one-dimensional.

5 14Mpg = Mp_4.
Here B—1={by—1,by —1,..., by —1}.

Recall that A Bif and only if ag < by < a1 < by < -+ < ag < bg.



The d-cluster-tilting subcategory of mod A% example
Recall that if we label A2

2
SN
1 3,

then the 2-cluster-tilting subcategory of mod A2 is given by

2 3
1 2

/! N

1 3.

Combinatorially, we label this

Mize — M

/! N

Mi3s Moy



Tilting modules in add M(¢")

Theorem ([0OT12])

A basic module @7, Mg, in add M@ js a tilting module if and

only if m = ("+Z_1) and {Bj: i € [m|} is non-intertwining.



3. (d+ 2)-angulated categories



3.1. Theory



Derived categories

Given a triangulated category D, a functorially finite subcategory C
of D is called d-cluster-tilting if

C={XeD:Vie[d-1],VYe C,Homp(X, Y[]) =0}
={XeD:Vie[d—1],vYYe C,Homp(Y,X[]) =0}.

Theorem ([lyall, Theorem 1.23])

Let A be a d-representation-finite d-hereditary algebra with unique
basic d-cluster-tilting module M. Then

Uy == add{ M[id| : i€ Z.}

is a d-cluster-tilting subcategory of D?(mod A).



The Nakayama functor

We denote by
v := DA ®% — = DRHomy(—,A): Dy — Dy,

the derived Nakayama functor.

Theorem ([IO11])

Let A be d-representation-finite d-hereditary. Then v restricts to a
functor Uy — U.

We write desuspensions of the Nakayama functor with subscripts,
so that vy := v[—d| is the derived analogue of the
d-Auslander—Reiten translate.



(d + 2)-angulated categories

GeiB, Keller, and Oppermann defined (d + 2)-angulated categories
as the higher-dimensional generalisation of triangulated categories
[GKO13].

Theorem ([GKO13])

A d-cluster-tilting subcategory of a triangulated category is
(d + 2)-angulated.



The higher derived category problem

For a d-representation-finite d-hereditary algebra A, we have the
subcategory Uy as the higher analogue of the derived category.

One can ask whether there is a higher analogue of the derived
category for all d-representation-finite algebras, not just
d-hereditary algebras.

However, given a d-representation-finite algebra A with
d-cluster-tilting module M, the subcategory
Uy =add{ M[id] : i€ Z}

is not always d-cluster-tilting and is not always (d + 2)-angulated.



The d-cluster-tilting subcategory of D?(mod A?): example

The derived category of A3 is as follows.

-1 1]

/\/\/\/\/

*)

\/\/\/\/\/

3[-1]

The 2-cluster-tilting subcategory UAg is highlighted in red.
An example of a 4-angle is

2 .3
1=>7—5—>3—=1[2]



3.2. Combinatorial description



The d-cluster-tilting subcategory of D?(mod A?)

Theorem ([OT12, Proposition 6.1 and Lemma 6.6])

1. The indecomposable objects of Upg are in bijection with

jd _lac Z ) Vie {0,1,...,d— 1},
n+2d+1 — d+1/"° ai+1 = ajit2 and ag+2 < ag+n+2d+1
2. UA[d] = U{al—1,32—1,...,ad—1,ao+n+2d}-
3. Homp ,(Ug, Ua) # 0 if and only if
bp—1l<ay<b —1<a <---<by—1<ag<by+n+2d,

and in this case the Hom-space is one-dimensional.
4, VdUB = Up_1.



The d-cluster-tilting subcategory of D?(mod A?): example

We consider the example of A3 again. The category uA% is as
follows.

212 214

SN SN N

112) 3 1[4] 3

Lo e e

3[-2] 3[2] 3[4]

This is then described combinatorially as follows.

Uise Uas7 Uses

SN N SN

Uiss Uis6 Uza7 Uss7 Uses Use9

Uoss Uz46 Usss Uarg



4. The (d+ 2)-angulated cluster category



4.1. Theory



Definition of the cluster category

The cluster category of A is defined to be the orbit category
[OT12, Definition 5.22]

For d = 1, this coincides with the classical cluster category of
[Bua+06].

The fundamental domain of O, is add(M @ A[d]), where M is the
basic d-cluster-tilting module in mod A.

The category O, is 2d-Calabi-Yau, that is

Homo, (X, Y) 2 DHomo, (Y, X[2d]).



Example: the (d+ 2)-angulated cluster category
We start with the category LIAg.

2 212 2a)

SN N SN

3 102] el 1 3141

3[-2] 3 3[2] 3[4]

We take the orbit category of this modulo v[—4] to obtain the
following.

N NN
R Z

32



Relation with the 2d-Amiot cluster category

The 2d-Amiot cluster category is defined

b
C3? = triangulated hull <D(modA)>

v[—2d|

These were introduced in [I013] based on [Ami09] and [Tho07].

Theorem ([0T12])

The (d+ 2)-angulated cluster category Oy is a d-cluster-tilting
subcategory of the 2d-Amiot cluster category Cid.



Relation with the 2d-Amiot cluster category: example
We start with the derived category of A2.

-1 1[1] 1[3]

/&/\/\/\/&f\/\m

= 3) =) 253w (-Hw e

\/x/\/x/\/x/\/

The 4-Amiot cluster category Cf‘% is as follows.

/\/\/\/E/x;gg\m
NSNINN SN NSNS

The 2-cluster-tilting subcategory uA% is highlighted in red.



4.2. Cluster-tilting objects



Cluster-tilting objects

Definition ([OT12, Definition 5.3])
An object T € Oy is cluster-tilting if
1. Homp, (T, T[d]) =0, and
2. any X € Oy occurs in a (d+ 2)-angle

X—d = Tg—Tg1——>T1 = To—= X

with T; € add T.

Theorem ([0T12])

An object T of Oy is cluster-tilting if and only if it is
2d-cluster-tilting in Cid.



Higher cluster-tilted algebras

Theorem ([OT12, Theorem 5.6])

Let T be a cluster-tilting object in Op and set I' := Endp, T.
Then the functor

HOIHOA(T, —) : Op — modIl
induces a fully faithful embedding
Oa/(T[d]) = modT.

The image of this functor is a d-cluster-tilting subcategory M of
mod I

Remark

The analogous statement for tilting modules is not true! That is,
tilted algebras of d-representation-finite algebras do not always
have d-cluster-tilting subcategories in their module categories.



4.3. Combinatorial description



Combinatorial description in type A

Theorem ([OT12, Proposition 6.1 and Theorem 5.2(3)])

There is a bijection A+ Oy between Opd niode1 and the
isomorphism classes of indecomposable objects of Og such that

the following properties hold.
1. Oald] = Oa_1.
2. Homp d(OB, Oa) # 0 if and only if (B—1)JA

3. For indecomposables Oy, Og of OAd, we have that
Homo ,(Og, Oald]) # 0 if and only if ASB.

Opd [m] \ Vie[d,a>ai1+2
Im.—{{ao,...,ad}€<d+1>.ad+2<ao+m .

Here AG B if either A B or B A.



Combinatorial description in type A: sketch proof

This follows from taking the combinatorial description of U4q
modulo n+ 2d + 1.

We obtain O4g from Uyg by taking the orbit category modulo

v|—2d|.

We have that v[~2d|U{a),a,,....a53 = V= Ufag.a1.....a00 =
VdU{ad—(n+2d)7ao+17...,ad_1+1} = U{ad—(n+2d+1),ao,...,ad}-
d

Taking I¢,,,, , modulo n+2d + 1 gives “I¢ ..

The other parts follow in the natural way.



The d-cluster-tilting subcategory of D?(mod A?): example

The category OAg is as follows.

el

/\ P /\

312]

3 1[21

Combinatorially, this is described as follows.

O136 O257 O146

SN N N

O146 O247 O357 O136 O246

O357 0246 0135 O247



Cluster-tilting objects in Oy

Theorem ([0T12])
A basic object @, Op, in O ad is a cluster-tilting object if and
only if m= (”+Z_2) and {B;: i € [m|} is non-intertwining.



5. The d-almost positive category



5.1. Theory



The d-almost positive category

Given a d-representation-finite d-hereditary algebra A with
d-cluster-tilting module M, define the d-almost positive category
Z/{i_d’o} to be the subcategory add(M @ A[d]) of D(mod A9).

For d = 1, this coincides with the category of two-term complexes
of projectives.

But, for d > 1, this category does not contain all (d+ 1)-term
complexes of projectives.



The d-almost positive category: example

We consider the example of A2 again. The category LlA% is as
follows.

212 214

N N N

112] 3 1(4] 314

3(-2] 32] 3[4]

The d-almost positive category UE‘QQ’O}_
2

12

SN, N

112 312

//

3



5.2. d-silting complexes



Silting complexes

A complex T in DP(mod A) is called pre-silting if
Hom po(moea py (T, T1i]) = 0 for all i > 0.

A pre-silting complex T in D’(mod A) is called silting if,
additionally, thick T = D?(mod A).

Here thick T denotes the smallest subcategory of D?(mod A) which
contains T and is closed under cones, [+1] and direct summands.



d-silting complexes

We call a silting object T of D?(mod A) d-silting if, additionally, it
lies in 241-40}
ies in Uy :

Note that for objects T, T’ of L{i_d’o} we have
Hom p(mod a) (T, T'[]) = 0 if i ¢ {—d,0, d} due to the
d-cluster-tilting condition and the global dimension of A.

Hence, for an object T of L{/{\_d’o} with thick T= D?(mod A) to be
d-silting, it suffices that Hom ps(yeq ) (T, Tld]) = 0.



5.3. Combinatorial description



The d-AP category for type A

The properties from the combinatorial description of U4 carry
over, and we get the following improved interpretation of
extensions.

Theorem ([Wil; OT12])
There is a bijection A +— Ua between OIngH and the

indecomposable objects of Uf\d 90} such that:

® Homps(med ad)(Ua, Ugld]) # 0 if and only if BY A, and in this
case the Hom-space is one-dimensional.



The d-AP category for type A: combinatorial description

We start with the d-almost positive category Ujf’o}.
2

i i
| /g 1[2] 2[2]
3
This is then labelled as follows.
Uise Uzs7
Uiss Ui46 U247 Uss7

//

Uz46



d-silting complexes in O 4q

Theorem ([Wil])

A basic complex @, Ug, in Z/{f\d_d’o} is a d-silting complex if and

only if m= (”+Z_2) and {B;: i € [m|} is non-intertwining.



Numbers of summands

In general, for tilting modules, cluster-tilting objects, and d-silting
complexes, it is not known whether one can replace the generating
condition with the condition that the object has as many
non-isomorphic indecomposable direct summands as there are
indecomposable projectives.

However, this is known for the d =1 cases for
® the tilting modules of projective dimension one from [BB80],

® cluster-tilting objects in the classical cluster category of
[Bua+-06],
® two-term silting complexes [Aih13; AIR14].

The fact that this is not known to hold for d > 1 is one of the
things that makes the higher case difficult.

Showing that having the right number of summands is sufficient in
the d > 1 case for A9 actually uses the interpretation in terms of
cyclic polytopes.



6. Unifying the settings



d-exangulated categories

Extriangulated categories were introduced in order to axiomatise
extension-closed subcategories of triangulated categories and to
unify exact categories with triangulated categories [NP19].

d-exangulated categories were introduced as the higher
generalisation of extriangulated categories [HLN21]. The d-almost
positive category is a d-exangulated category.

Roughly, a d-exangulated category is an additive category with an
additive bifunctor to Ab which represents Ext, and a choice of
sequences (“d-exangles”) which “realise” the elements of the
extension group.

These d-exangles can be (d + 2)-angles, or exact sequences with d
middle terms, for instance.

The set of d-exangles in a d-exangulated structure can be a subset
of the (d+ 2)-angles or exact sequences in the underlying category.



Quotienting by projective-injectives

The quotient of an extriangulated category by an additive
subcategory consisting of projective-injective modules remains an
extriangulated category.

For instance, the quotient of a Frobenius extriangulated category
by the subcategory consisting of all projective-injectives gives a
triangulated category.

The quotient of a d-exangulated category by a subcategory
consisting of projective-injective modules is not always a
d-exangulated category, but is in some nice cases [HZZ21].



Relation between the module category and the d-almost
positive category

Theorem (W)

Let J be the category of projective-injective Af,’ 1-modules. Then
there is an equivalence of d-exangulated categories

add MG /7 ~ 40,

This is proved using the combinatorial interpretation.

This explains why d-silting for A9 behaves the same as tilting
inside add M(%"+1) for A9, .



Relation between the module category and the d-almost
positive category: example

If we label Q23) as

then the 2-cluster-tilting subcategory of mod A? is given by

3

% — 43 Mig7 — Miar — Misz

2/4/*x\ SN\

Mize — Miae Maya7 — Mas7

/\/ N/ N/ \

1 6. Mss Maae Mss7.

wao



Relation between the module category and the d-almost
positive category: example
Taking the category

Mig7 = Miar — Mis7

SN N

Mize — Mise Mza7 —> Mas7

/NN

M35 Mza6 Mss7,

and quotienting out the projective-injectives, gives the following,

which is equivalent to the 2-almost positive category Z/l{ 20},

M1z — Misg Maya7 — Mas7 *> 3 1[2] — %[2]

SN N N/ N

Mi35 Ma46 Mss7, 3 3[2]-



Relation between the cluster category and the d-almost
positive category

Consider the d-exangulated structure on O 44 where the
distinguished d-exangles are given by d|st|ngU|shed (d + 2)-angles

01—>Gd—> Gd,1—>---—>G1—>OQ—>01[d]

where Oy — O4[d| factors through Os[d], where Os is the image of
a projective A%-module in O pg-

We further quotient by the ideal of morphisms O;[d] — O, where
O1 and O, are both images in O 44 of projective A9-modules.

Theorem (W)

The resulting category is equivalent to L{/{\;d’o}_



Relation between the cluster category and the d-almost
positive category: example
We start with the 4-angulated cluster category

212)

_"1/\ N /\
e

el 1[21

Our new 2-angulated structure consists of those 4-angles
Gl — G2 — G3 — G4—> 61[2]

where Gy — G;[2] factors through a shifted projective.



Relation between the cluster category and the d-almost
positive category: example

Taking the ideal quotient with respect to morphisms which factor
through morphisms from shifted projectives to projectives is the

same as quotienting out the morphism 3[2] — 1.

212)

SN, N

112 312

//

3

ul; >,

This is indeed the 2-almost positive category U ,,
2
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