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Introduction

In their paper [OT12], Oppermann and Thomas introduce two
representation-theoretic frameworks relating cyclic polytopes and
higher Auslander–Reiten theory:

• the d-cluster-tilting subcategories of the module categories of
the higher Auslander algebras of type A,

• the (d + 2)-angulated cluster categories of the higher
Auslander algebras of type A.

In [Wil], a third representation-theoretic framework was
introduced:

• the d-almost positive categories of the higher Auslander
algebras of type A.

In this talk, we describe these three frameworks, and make precise
the relationship between them using d-exangulated categories.
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1. Preliminaries



Approximations
We require subcategories to be full and closed under isomorphism.

Given a subcategory X of an abelian category A and a map
f : X → M, where X ∈ X and M ∈ A, we say that f is a right
X -approximation if for any X′ ∈ X , the sequence

HomA(X′,X) → HomA(X′,M) → 0

is exact.

This means that HomA(−,M) : X → Ab is a finitely generated
contravariant functor, since there is an epimorphism
HomX (−,X) → HomA(−,M).

Dually, g : M → X is a left X -approximation if for any X′ ∈ X , the
sequence

HomA(X,X′) → HomA(M,X′) → 0

is exact.



Functorial finiteness, generation, and cogeneration

The subcategory X is said to be contravariantly finite if every
M ∈ A admits a right X -approximation, and covariantly finite if
every M ∈ A admits a left X -approximation.

If X is both contravariantly finite and covariantly finite, then X is
functorially finite.

The subcategory X is generating if, for any M ∈ A, there is an
epimorphism p : X → M, where X ∈ X .

The definition of cogenerating is dual to this.



2. d-abelian categories



2.1. Theory



Higher Auslander–Reiten theory: abelian categories

Introduced by Iyama as a higher-dimensional generalisation of
classical Auslander–Reiten theory.

Given an abelian category A, a functorially finite
generating–cogenerating subcategory M of A is called
d-cluster-tilting if

M = {X ∈ A : ∀M ∈ M,Ext1,...,d−1
A (X,M) = 0}

= {X ∈ A : ∀M ∈ M,Ext1,...,d−1
A (M,X) = 0}.



d-abelian categories

Introduced by Jasso as the higher analogue of abelian categories
[Jas16].

Theorem ([Jas16; Kva21; EN20])
1. A d-cluster-tilting subcategory of an abelian category is

d-abelian.
2. Any d-abelian category is equivalent to a d-cluster-tilting

subcategory of an abelian category.



Higher Auslander–Reiten theory: finite-dimensional
algebras

Now, let Λ be a finite-dimensional algebra over a field K.

A d-cluster-tilting subcategory of modΛ must contain the
projectives and injectives, and so is automatically generating and
cogenerating. Hence, one can drop this condition.

If add M is a d-cluster-tilting subcategory of modΛ for some
Λ-module M, then M is called a d-cluster-tilting module.

If Λ has a d-cluster-tilting module M, then Λ is called
d-representation-finite [IO11].

If, furthermore, Λ has gl. dimΛ 6 d, then Λ is called
d-representation-finite d-hereditary [HIO14].



Auslander correspondence
An Auslander algebra Γ is an algebra with
gl. dimΓ 6 2 6 dom. dimΓ.
Given a minimal injective resolution

0 → Γ → I0 → I1 → · · · → Im → . . .

dom. dimΓ = {k : Ii is projective , ∀0 6 i < k}.

Theorem (Auslander correspondence, [Aus71])
There is a bijection between Morita-equivalence classes of
representation-finite algebras and Morita-equivalence classes of
Auslander algebras.

If Λ is a representation-finite algebra with M the sum of the
indecomposable Λ-modules, this bijection is given by

Λ 7→ EndΛ M.



Higher Auslander correspondence

A d-Auslander algebra Γ is an algebra with
gl. dimΓ 6 d + 1 6 dom. dimΓ.

Theorem (Higher Auslander correspondence, [Iya07a])
There is a bijection between Morita-equivalence classes of
d-representation-finite algebras and Morita-equivalence classes of
d-Auslander algebras.

If Λ is a d-representation-finite algebra with M a d-cluster-tilting
Λ-module, this bijection is given by

Λ 7→ EndΛ M.



d-Auslander–Reiten formulas

There is a higher Auslander–Reiten translate, defined by
τd = τΩd−1.

We get higher Auslander–Reiten formulas, analogous to the
classical ones.

Theorem ([Iya07b])
For M,N ∈ M, a d-cluster-tilting subcategory of modΛ, we have

Extd
Λ(M,N) ∼= DHomΛ(τ

−1
d N,M) ∼= DHomΛ(N, τdM).



2.2. Tilting modules



Tilting modules: definition

Tilting modules of projective dimension one were defined by
Brenner and Butler [BB80] as a generalisation of BGP reflection
functors [BGP73; APR79].

Miyashita defined tilting modules of higher projective dimension
[Miy86].

This was in turn generalised by Cline, Parshall, and Scott, whose
definition we use here [CPS86, Definition 2.3].

Given a Λ-module T, we say that T is a tilting module if:
1. the projective dimension of T is finite;
2. Exti

Λ(T,T) = 0 for all i > 0; that is, T is rigid;
3. there is an exact sequence 0 → Λ → T0 → · · · → Ts → 0

with each Ti ∈ add T.



Tilting modules: motivation

The main motivation for studying tilting modules comes from the
following theorem.

Theorem ([Hap88, gl. dimΛ < ∞][CPS86, gl. dimΛ = ∞])
If T is a tilting Λ-module, then there is a derived equivalence

Db(modΛ) ' Db(mod EndΛ T).



2.3. The higher Auslander algebras of type A



Higher quivers of type A
Following [OT12],

Id
m :=

{
{a0, . . . , ad} ∈

(
[m]

d + 1

)
: ∀i ∈ [d], ai > ai−1 + 2

}
Let Q(d,n) be the quiver with vertices

Q(d,n)
0 := Id−1

n+2d−2

and arrows
Q(d,n)

1 := {A → σi(A) : A, σi(A) ∈ Q(d,n)
0 },

where
σi(A) := {a0, a1, . . . , ai−1, ai + 1, ai+1, . . . , ad}.

1

2

3

13

14

15

24

25

35 135

136

137

146

147 157

246

247 257

357

Q(1,3) Q(2,3) Q(3,3)



Higher Auslander algebras of type A
Let Ad

n be the quotient of the path algebra KQ(d,n) by the relations:

A → σi(A) → σj(σi(A)) =
{

A → σj(A) → σj(σi(A)) if σj(A) ∈ Q(d,n)
0

0 otherwise.

We multiply arrows as if we were composing functions, so that
α−→ β−→= βα.

Theorem ([Iya11])
Ad

n is d-representation-finite d-hereditary with unique basic
d-cluster-tilting module M(d,n) and

EndAdn
M(d,n) ∼= Ad+1

n .

One can do something similar in other Dynkin types, but it is more
complicated.



Higher Auslander algebras of type A: derived equivalence

Theorem ([Bec; DJL21])
The algebras Ad

n+d−1 and An−d
d+1 are derived equivalent; that is,

Db(mod Ad
n+d−1)

∼= Db(mod An−d
d+1).

For example, A1
3 = A1

3+1−1 is derived equivalent to A2
2 = A3−1

1+1.

1 2 3 13

14

24



The d-cluster-tilting subcategory of mod Ad
n: example

If we label Q(2,2) as

13 24,

14

1 3,

2

then this has Auslander–Reiten quiver.

1

1
2

2

2
3

3

The 2-cluster-tilting subcategory of mod A2
3 is given by

1

1
2

2
3

3



2.4. Combinatorial description



The d-cluster-tilting subcategory of mod Ad
n

Theorem ([OT12, Theorem 3.6])
There is a bijection A 7→ MA between Id

n+2d and the
indecomposables of add M(d,n) such that:

1. MA is projective if and only if a0 = 1.
2. MA is injective if and only if ad = n + 2d.
3. HomAdn

(MB,MA) 6= 0 if and only if (B − 1) o A, and in this
case the Hom-space is one-dimensional;

4. ExtAdn
(MB,MA) 6= 0 if and only if A o B, and in this case the

Ext-space is one-dimensional.
5. τdMB = MB−1.

Here B − 1 = {b0 − 1, b1 − 1, . . . , bd − 1}.

Recall that A o B if and only if a0 < b0 < a1 < b1 < · · · < ad < bd.



The d-cluster-tilting subcategory of mod Ad
n: example

Recall that if we label A2
2

1 3,

2

then the 2-cluster-tilting subcategory of mod A2
2 is given by

1

1
2

2
3

3.

Combinatorially, we label this

M135

M136 M146

M246.



Tilting modules in add M(d,n)

Theorem ([OT12])
A basic module

⊕m
i=1 MBi in add M(d,n) is a tilting module if and

only if m =
(n+d−1

d
)

and {Bi : i ∈ [m]} is non-intertwining.



3. (d + 2)-angulated categories



3.1. Theory



Derived categories

Given a triangulated category D, a functorially finite subcategory C
of D is called d-cluster-tilting if

C = {X ∈ D : ∀i ∈ [d − 1], ∀Y ∈ C,HomD(X,Y[i]) = 0 }
= {X ∈ D : ∀i ∈ [d − 1], ∀Y ∈ C,HomD(Y,X[i]) = 0 }.

Theorem ([Iya11, Theorem 1.23])
Let Λ be a d-representation-finite d-hereditary algebra with unique
basic d-cluster-tilting module M. Then

UΛ := add{M[id] : i ∈ Z }

is a d-cluster-tilting subcategory of Db(modΛ).



The Nakayama functor

We denote by

ν := DΛ⊗L
Λ − ∼= DR HomΛ(−,Λ): DΛ → DΛ,

the derived Nakayama functor.

Theorem ([IO11])
Let Λ be d-representation-finite d-hereditary. Then ν restricts to a
functor UΛ → UΛ.

We write desuspensions of the Nakayama functor with subscripts,
so that νd := ν[−d] is the derived analogue of the
d-Auslander–Reiten translate.



(d + 2)-angulated categories

Geiß, Keller, and Oppermann defined (d + 2)-angulated categories
as the higher-dimensional generalisation of triangulated categories
[GKO13].

Theorem ([GKO13])
A d-cluster-tilting subcategory of a triangulated category is
(d + 2)-angulated.



The higher derived category problem

For a d-representation-finite d-hereditary algebra Λ, we have the
subcategory UΛ as the higher analogue of the derived category.

One can ask whether there is a higher analogue of the derived
category for all d-representation-finite algebras, not just
d-hereditary algebras.

However, given a d-representation-finite algebra Λ with
d-cluster-tilting module M, the subcategory

UΛ = add{M[id] : i ∈ Z }

is not always d-cluster-tilting and is not always (d + 2)-angulated.



The d-cluster-tilting subcategory of Db(mod Ad
n): example

The derived category of A2
2 is as follows.

…
(

1
2 → 2

3
)

[−1]

2
3[−1]

3[−1]

2

1[1]

1
2 → 2

3

1
2[1]

2[1]

2
3[1]

…

1

1
2

2
3

3

1[2]1

1
2

2
3

3

1[2]

The 2-cluster-tilting subcategory UA2
2

is highlighted in red.

An example of a 4-angle is

1 → 1
2 → 2

3 → 3 → 1[2].



3.2. Combinatorial description



The d-cluster-tilting subcategory of Db(mod Ad
n)

Theorem ([OT12, Proposition 6.1 and Lemma 6.6])
1. The indecomposable objects of UAdn

are in bijection with

Ĩd
n+2d+1 =

{
A ∈

(
Z

d + 1

)
:

∀i ∈ {0, 1, . . . , d − 1},
ai+1 > ai+2 and ad+2 6 a0+n+2d+1

}
.

2. UA[d] = U{a1−1,a2−1,...,ad−1,a0+n+2d}.
3. HomDAdn

(UB,UA) 6= 0 if and only if

b0 − 1 < a0 < b1 − 1 < a1 < · · · < bd − 1 < ad < b0 + n+2d,

and in this case the Hom-space is one-dimensional.
4. νdUB = UB−1.



The d-cluster-tilting subcategory of Db(mod Ad
n): example

We consider the example of A2
2 again. The category UA2

2
is as

follows.

…

3[-2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

3[2]

1[4]

1
2[4]

2
3[4]

3[4]

…

This is then described combinatorially as follows.

…

U035

U135

U136

U146

U246

U247

U257

U357

U358

U368

U468

U469

U479

…



4. The (d + 2)-angulated cluster category



4.1. Theory



Definition of the cluster category

The cluster category of Λ is defined to be the orbit category
[OT12, Definition 5.22]

OΛ =
UΛ

ν[−2d] .

For d = 1, this coincides with the classical cluster category of
[Bua+06].

The fundamental domain of OΛ is add(M ⊕ Λ[d]), where M is the
basic d-cluster-tilting module in modΛ.

The category OΛ is 2d-Calabi–Yau, that is

HomOΛ
(X,Y) ∼= D HomOΛ

(Y,X[2d]).



Example: the (d + 2)-angulated cluster category
We start with the category UA2

2
.

…

3[-2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

3[2]

1[4]

1
2[4]

2
3[4]

3[4]

…

We take the orbit category of this modulo ν[−4] to obtain the
following.

…

2
3[2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

1

1
2

2
3

3

1[2]

…



Relation with the 2d-Amiot cluster category

The 2d-Amiot cluster category is defined

C2d
Λ = triangulated hull

(
Db(modΛ)

ν[−2d]

)
.

These were introduced in [IO13] based on [Ami09] and [Tho07].

Theorem ([OT12])
The (d + 2)-angulated cluster category OΛ is a d-cluster-tilting
subcategory of the 2d-Amiot cluster category C2d

Λ .



Relation with the 2d-Amiot cluster category: example
We start with the derived category of A2

2.

…
(

1
2 → 2

3
)

[−1]

2
3[−1]

3[−1]

2

1[1]

1
2 → 2

3

1
2[1]

2[1]

2
3[1]

(
1
2 → 2

3
)

[1]

3[1]

2[2]

1[3]

…

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

The 4-Amiot cluster category C4
A2
2

is as follows.

… 2[3]

3
2[3]

2
3[3]

2

1[1]

1
2 → 2

3

1
2[1]

2[1]

2
3[1]

(
1
2 → 2

3
)

[1]

3[1]

2[2]

1[3]

…

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

The 2-cluster-tilting subcategory UA2
2

is highlighted in red.



4.2. Cluster-tilting objects



Cluster-tilting objects

Definition ([OT12, Definition 5.3])
An object T ∈ OΛ is cluster-tilting if

1. HomOΛ
(T,T[d]) = 0, and

2. any X ∈ OΛ occurs in a (d + 2)-angle

X[−d] → Td → Td−1 → · · · → T1 → T0 → X

with Ti ∈ add T.

Theorem ([OT12])
An object T of OΛ is cluster-tilting if and only if it is
2d-cluster-tilting in C2d

Λ .



Higher cluster-tilted algebras
Theorem ([OT12, Theorem 5.6])
Let T be a cluster-tilting object in OΛ and set Γ := EndOΛ

T.
Then the functor

HomOΛ
(T,−) : OΛ → modΓ

induces a fully faithful embedding

OΛ/(T[d]) ↪→ modΓ.

The image of this functor is a d-cluster-tilting subcategory M of
modΓ.

Remark
The analogous statement for tilting modules is not true! That is,
tilted algebras of d-representation-finite algebras do not always
have d-cluster-tilting subcategories in their module categories.



4.3. Combinatorial description



Combinatorial description in type A

Theorem ([OT12, Proposition 6.1 and Theorem 5.2(3)])
There is a bijection A 7→ OA between 	Id

n+2d+1 and the
isomorphism classes of indecomposable objects of OAdn

such that
the following properties hold.

1. OA[d] = OA−1.
2. HomOAdn

(OB,OA) 6= 0 if and only if (B − 1)]A
3. For indecomposables OA,OB of OAdn

, we have that
HomOAdn

(OB,OA[d]) 6= 0 if and only if A]B.

	Id
m :=

{
{a0, . . . , ad} ∈

(
[m]

d + 1

)
:
∀i ∈ [d], ai > ai−1 + 2,
ad + 2 6 a0 + m

}
.

Here A]B if either A o B or B o A.



Combinatorial description in type A: sketch proof

This follows from taking the combinatorial description of UAdn
modulo n + 2d + 1.

We obtain OAdn
from UAdn

by taking the orbit category modulo
ν[−2d].

We have that ν[−2d]U{a0,a1,...,ad} = νd[−d]U{a0,a1,...,ad} =
νdU{ad−(n+2d),a0+1,...,ad−1+1} = U{ad−(n+2d+1),a0,...,ad}.

Taking Ĩd
n+2d+1 modulo n + 2d + 1 gives 	Id

n+2d+1.

The other parts follow in the natural way.



The d-cluster-tilting subcategory of Db(mod Ad
n): example

The category OA2
2

is as follows.

…

2
3[2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

1

1
2

2
3

3

1[2]

…

Combinatorially, this is described as follows.

…

O357

O135

O136

O146

O246

O247

O257

O357

O135

O136

O146

O246

O247

…



Cluster-tilting objects in OAd
n

Theorem ([OT12])
A basic object

⊕m
i=1 OBi in OAdn

is a cluster-tilting object if and
only if m =

(n+d−2
d

)
and {Bi : i ∈ [m]} is non-intertwining.



5. The d-almost positive category



5.1. Theory



The d-almost positive category

Given a d-representation-finite d-hereditary algebra Λ with
d-cluster-tilting module M, define the d-almost positive category
U{−d,0}
Λ to be the subcategory add(M ⊕ Λ[d]) of Db(mod Ad

n).

For d = 1, this coincides with the category of two-term complexes
of projectives.

But, for d > 1, this category does not contain all (d + 1)-term
complexes of projectives.



The d-almost positive category: example
We consider the example of A2

2 again. The category UA2
2

is as
follows.

…

3[-2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

3[2]

1[4]

1
2[4]

2
3[4]

3[4]

…

The d-almost positive category U{−2,0}
A2
2

.

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]



5.2. d-silting complexes



Silting complexes

A complex T in Db(modΛ) is called pre-silting if
HomDb(modΛ)(T,T[i]) = 0 for all i > 0.

A pre-silting complex T in Db(modΛ) is called silting if,
additionally, thick T = Db(modΛ).

Here thick T denotes the smallest subcategory of Db(modΛ) which
contains T and is closed under cones, [±1] and direct summands.



d-silting complexes

We call a silting object T of Db(modΛ) d-silting if, additionally, it
lies in U{−d,0}

Λ .

Note that for objects T,T′ of U{−d,0}
Λ we have

HomDb(modΛ)(T,T′[i]) = 0 if i /∈ {−d, 0, d} due to the
d-cluster-tilting condition and the global dimension of Λ.

Hence, for an object T of U{−d,0}
Λ with thick T = Db(modΛ) to be

d-silting, it suffices that HomDb(modΛ)(T,T[d]) = 0.



5.3. Combinatorial description



The d-AP category for type A

The properties from the combinatorial description of UAdn
carry

over, and we get the following improved interpretation of
extensions.

Theorem ([Wil; OT12])
There is a bijection A 7→ UA between 	Id

n+2d+1 and the
indecomposable objects of U{−d,0}

Adn
such that:

• HomDb(mod Adn)
(UA,UB[d]) 6= 0 if and only if B o A, and in this

case the Hom-space is one-dimensional.



The d-AP category for type A: combinatorial description
We start with the d-almost positive category U{−2,0}

A2
2

.

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

This is then labelled as follows.

U135

U136

U146

U246

U247

U257

U357



d-silting complexes in OAd
n

Theorem ([Wil])
A basic complex

⊕m
i=1 UBi in U{−d,0}

Adn
is a d-silting complex if and

only if m =
(n+d−2

d
)

and {Bi : i ∈ [m]} is non-intertwining.



Numbers of summands
In general, for tilting modules, cluster-tilting objects, and d-silting
complexes, it is not known whether one can replace the generating
condition with the condition that the object has as many
non-isomorphic indecomposable direct summands as there are
indecomposable projectives.
However, this is known for the d = 1 cases for

• the tilting modules of projective dimension one from [BB80],
• cluster-tilting objects in the classical cluster category of

[Bua+06],
• two-term silting complexes [Aih13; AIR14].

The fact that this is not known to hold for d > 1 is one of the
things that makes the higher case difficult.
Showing that having the right number of summands is sufficient in
the d > 1 case for Ad

n actually uses the interpretation in terms of
cyclic polytopes.



6. Unifying the settings



d-exangulated categories
Extriangulated categories were introduced in order to axiomatise
extension-closed subcategories of triangulated categories and to
unify exact categories with triangulated categories [NP19].

d-exangulated categories were introduced as the higher
generalisation of extriangulated categories [HLN21]. The d-almost
positive category is a d-exangulated category.

Roughly, a d-exangulated category is an additive category with an
additive bifunctor to Ab which represents Ext, and a choice of
sequences (“d-exangles”) which “realise” the elements of the
extension group.

These d-exangles can be (d + 2)-angles, or exact sequences with d
middle terms, for instance.

The set of d-exangles in a d-exangulated structure can be a subset
of the (d + 2)-angles or exact sequences in the underlying category.



Quotienting by projective-injectives

The quotient of an extriangulated category by an additive
subcategory consisting of projective-injective modules remains an
extriangulated category.

For instance, the quotient of a Frobenius extriangulated category
by the subcategory consisting of all projective-injectives gives a
triangulated category.

The quotient of a d-exangulated category by a subcategory
consisting of projective-injective modules is not always a
d-exangulated category, but is in some nice cases [HZZ21].



Relation between the module category and the d-almost
positive category

Theorem (W)
Let J be the category of projective-injective Ad

n+1-modules. Then
there is an equivalence of d-exangulated categories

add M(d,n+1)/J ' U{−d,0}
Adn

.

This is proved using the combinatorial interpretation.

This explains why d-silting for Ad
n behaves the same as tilting

inside add M(d,n+1) for Ad
n+1.



Relation between the module category and the d-almost
positive category: example

If we label Q(2,3) as

13 24 35,

14 25

15

1 4 6,

2 5

3

then the 2-cluster-tilting subcategory of mod A2
3 is given by

1

1
2

1
2
3

2
4

2
4 3
5

3
5
6

4

4
5

5
6

6. M135

M136

M137

M146

M147 M157

M246

M247 M257

M357.



Relation between the module category and the d-almost
positive category: example

Taking the category

M135

M136

M137

M146

M147 M157

M246

M247 M257

M357,

and quotienting out the projective-injectives, gives the following,
which is equivalent to the 2-almost positive category U{−2,0}

A2
2

.

M135

M136 M146

M246

M247 M257

M357, 1

1
2

2
3

3

1[2] 1
2[2]

2
3[2].



Relation between the cluster category and the d-almost
positive category

Consider the d-exangulated structure on OAdn
where the

distinguished d-exangles are given by distinguished (d + 2)-angles

O1 → Gd → Gd−1 → · · · → G1 → O2 → O1[d]

where O2 → O1[d] factors through O3[d], where O3 is the image of
a projective Ad

n-module in OAdn
.

We further quotient by the ideal of morphisms O1[d] → O2, where
O1 and O2 are both images in OAdn

of projective Ad
n-modules.

Theorem (W)
The resulting category is equivalent to U{−d,0}

Adn
.



Relation between the cluster category and the d-almost
positive category: example

We start with the 4-angulated cluster category

…

2
3[2]

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

1

1
2

2
3

3

1[2]

…

Our new 2-angulated structure consists of those 4-angles

G1 → G2 → G3 → G4 → G1[2]

where G4 → G1[2] factors through a shifted projective.



Relation between the cluster category and the d-almost
positive category: example

Taking the ideal quotient with respect to morphisms which factor
through morphisms from shifted projectives to projectives is the
same as quotienting out the morphism 2

3[2] → 1.

1

1
2

2
3

3

1[2]

1
2[2]

2
3[2]

This is indeed the 2-almost positive category U{−2,0}
A2
2

.



ありがとうございました！
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