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1. Cyclic polytopes



Cyclic polytopes: standard construction
The cyclic polytope
C(m, δ) is the con-
vex hull of m points
{p(t1), . . . , p(tm)} ⊂ Rδ

on the curve

p(t) = (t, t2, . . . , tδ),

where {t1, . . . , tm} ⊂ R.

This curve is known as the
moment curve.

To simplify, one can always
choose {t1, . . . , tm} =
{1, . . . ,m} =: [m], without
loss of generality.
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1.1. Constructing cyclic polytopes



More general cyclic polytopes

Two polytopes are combinatorially equivalent if they have
isomorphic face lattices.

Here a subpolytope is the convex hull of a subset of the vertices.

It follows from the standard construction of cyclic polytopes that
any subpolytope of a cyclic polytope must be cyclic too.

More generally, a polytope C(m, δ) is a cyclic polytope if it is
combinatorially equivalent to the polytope C(m, δ) from the
previous slide in such a way that it restricts to combinatorial
equivalences between the corresponding subpolytopes.



Other constructions of cyclic polytopes: order δ curves

There are in fact many curves one can choose to define a cyclic
polytope.

Definition
A curve is called an order δ curve if no affine hyperplane can meet
it in strictly more than δ points.

In particular, the moment curve is an order δ curve.

Theorem ([CD00; Stu87])
1. A curve is an order δ curve if and only if the convex hull of

any m points on the curve is a cyclic polytope C(m, δ).
2. Every cyclic polytope C(m, δ) has an order δ curve passing

through its vertices in the right order.



Other constructions of cyclic polytopes: totally positive
matrices

A matrix is totally positive if all of its minors are positive.

Embed Rδ−1 as the affine hyperplane in Rδ.

Let x1, . . . , xm be the vertices of a cyclic polytope C(m, δ − 1) in
this embedded copy of Rδ−1.

Let M be an (m− δ)× δ matrix of homogeneous coordinates of
xδ+1, . . . , xm in the ordered basis

{(−1)δ+1xδ, (−1)δxδ−1, . . . ,−x2, x1}

of Rδ.

Theorem ([Stu88])
The matrix M is totally positive, and every totally positive matrix
arises in this way.



1.2. Properties of cyclic polytopes



Upper Bound Theorem
The following theorem is a key property of cyclic polytopes.

Theorem ([McM70])
Out of all polytopes with m vertices in dimension δ, the cyclic
polytope C(m, δ) has the largest number of k-dimensional faces for
every k.

Stanley generalised this theorem to triangulated spheres using
Stanley–Reisner theory [Sta75].

In fact, the following result holds for cyclic polytopes.

Theorem ([Gal63])
The cyclic polytope C(m, δ) is ⌊δ/2⌋-neighbourly: every set of
⌊δ/2⌋ vertices spans a face.



Ramsey-theoretic properties

Another remarkable property of cyclic polytopes is the following.

Theorem ([CD00; Bjö+99])
Any sufficiently large collection of points in general position in Rδ

must contain the set of vertices of a cyclic polytope C(m, δ).
Moreover, any polytope which has this property is a cyclic
polytope.

This is a higher-dimensional version of the famous Erdős–Szekeres
Theorem, which says that every sufficiently long sequence of real
numbers must contain a monotonic sequence of a given length.



1.3. Facets of cyclic polytopes



Upper facets and lower facets

From now on, we restrict our attention to the standard
construction of cyclic polytopes.

Recall that a facet of a polytope is a face of codimension one.

A facet |F| of C(m, δ) is an upper facet (lower facet) if for any
a = (a1, . . . , aδ) ∈ Rδ such that ⟨a,−⟩ is maximised on |F|, we
have that aδ > 0 (aδ < 0).

More intuitively, a facet is an upper facet if its normal vector
pointing out of the polytope points upwards with respect to the
δ-th coordinate.



Gale’s Evenness Criterion

Definition
Given F ⊂ [m], then F is an odd (even) subset if for all i ∈ [m] \ F,

#{j ∈ F : j > i}

is odd (even).

Theorem ([Gal63; ER96])
Given F ⊂ [m], we have that |F| is an upper facet (lower facet) of
C(m, δ) if and only if F is an odd subset (even subset).



Proof of Gale’s Evenness Criterion

Let F = {f0, . . . , fδ−1} ⊂ [m].

Consider the polynomial q(t) :=
∏δ−1

i=0 (t− fi).

Define βi such that q(t) =
∑δ

i=0 βiti, and let β = (β1, . . . , βδ).

The unique hyperplane through |F| is given by ⟨β, x⟩+ β0 = 0,
since ⟨β, p(t)⟩+ β0 = q(t), which is zero precisely for elements of
F (where p(t) = (t, t2, . . . , tδ) is the moment curve).

|F| is an upper facet if and only if ⟨β, p(j)⟩+ β0 = q(j) < 0 for all
j ∈ [m] \ F, since βδ = 1 > 0.

This is equivalent to F’s being an odd subset, as desired. The
proof for lower facets is similar.
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1.4. Circuits of cyclic polytopes



Circuits
A circuit of a polytope is a pair (A,B) of disjoint sets of vertices
such that conv(A) ∩ conv(B) ̸= ∅ such that A and B are minimal
with respect to this property.

Theorem ([Bre73])
The circuits of C(m, δ) are the pairs (Z−,Z+), (Z+,Z−) where
Z− = {. . . , zδ−1, zδ+1},Z+ = {. . . , zδ, zδ+2} for
{z1, z2, . . . , zδ+1, zδ+2} ⊆ [m].

Here we say that Z− intertwines Z+ and write Z− ≀ Z+.

Proof.
The circuits of C(m, δ) cannot be supported on fewer than δ + 2
vertices, since the moment curve is an order δ curve.
Radon’s theorem tells us that δ + 2 vertices in Rδ can be
partitioned into two halves of a circuit.
No other partition is possible, due to Gale’s Evenness Criterion.



Examples of circuits
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2. Triangulations of cyclic polytopes



Triangulations

A triangulation of C(m, δ) is a subdivision of C(m, δ) into
δ-simplices whose vertices are vertices of C(m, δ).
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2.1. Fundamental properties of triangulations



The upper and lower triangulations
C(m, δ) possesses two special triangulations called the upper
triangulation and the lower triangulation.
These result respectively from the projections of the upper and
lower facets of C(m, δ + 1).
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Sections induced by triangulations

Triangulations T give sections sT : C(m, δ)→ C(m, δ + 1). These
are composed of simplex-wise maps sA : |A| → C(m, δ + 1) for
simplices |A|.
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Bistellar flips

Every triangulation of C(δ + 2, δ) induces a section of
C(δ + 2, δ + 1).

But C(δ + 2, δ + 1) is a simplex, so it only has two sections: the
upper facets and the lower facets.

Hence C(δ + 2, δ) has only two triangulations: the upper
triangulation and the lower triangulation.

An increasing bistellar flip on a triangulation T of C(m, δ) consists
of replacing a lower triangulation of a C(δ + 2, δ) subpolytope with
the upper triangulation of this subpolytope.



Examples of bistellar flips
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Flipping a diagonal inside a quadrilateral is a well-known operation
from cluster algebras. Bistellar flips generalise this to arbitrary
dimensions.



2.2. Describing triangulations of cyclic polytopes



Dey’s Theorem
When we consider a triangulation of a convex polygon, we think in
terms of non-intersecting arcs, not triangles.

•

•
•

•

•1

2
3

4

5

One thinks of this as {13, 14}, not {123, 134, 145}.

Theorem ([Dey93])
A triangulation of a point configuration in Rδ is determined by its
⌊δ/2⌋-simplices.

For cyclic polytopes, it suffices to consider internal ⌊δ/2⌋-simplices,
i.e., ones which are not on the boundary of the polytope.



Description of even-dimensional triangulations

A triangulation of a convex polygon is given by a set of
non-crossing arcs of a particular size.

A similar description holds for even-dimensional cyclic polytopes.

Theorem ([OT12])
A triangulation of C(m, 2d) is given by a set of size

(m−d−2
d

)
of

internal d-simplices whose interiors do not intersect.

There are sets of non-intersecting internal d-simplices which are
maximal with respect to inclusion but not maximal with respect to
size.



Combinatorial description for even dimensions

Theorem ([OT12])
There is a bijection between triangulations of C(m, 2d) and sets of
non-intertwining (d + 1)-subsets from 	Id

m of size
(m−d−2

d
)

given
by sending a triangulation T to its set of internal d-simplices e̊(T ).

A d-simplex |A| in C(m, 2d) is internal if and only if

A ∈ 	Id
m := {{a0, . . . , ad} ⊆ [m] | ai+1 > ai + 2 mod m} .

We know from the description of the circuits of C(m, 2d) when the
interiors of a pair of d-simplices |A| and |B| intersect, namely when
A ≀ B or B ≀ A.



Description of even-dimensional triangulations: example
The cyclic polytope C(7, 4) has the following 7 triangulations, as
described by their sets of internal 2-simplices.

{135, 136, 146}
{246, 247, 257}
{135, 136, 357}
{146, 246, 247}
{135, 257, 357}
{136, 146, 246}
{247, 257, 357}

For the first of these triangulations, the full set of 4-simplices is

{12345, 12356, 12367, 13456, 13467, 14567}.



How about odd dimensions?
What would an odd-dimensional analogue of the description of
triangulations of even-dimensional cyclic polytopes from [OT12]
look like?

In dimension 2d + 1, the circuits are between a d-simplex and a
(d + 1)-simplex, not between two simplices of the same dimension.

One could try taking a maximal set of (d + 1)-simplices and
d-simplices which don’t intersect each other.
• In odd dimensions numbers of simplices vary between

triangulations, so there is no “maximal size” as in even
dimensions.
• Being maximal (with respect to inclusion) doesn’t guarantee

that one has a triangulation [Ram97].
• The (d + 1)-simplices are redundant information here, by

Dey’s theorem.



Combinatorial description of odd-dimensional
triangulations

Instead, we characterise when a set of d-simplices are the internal
d-simplices of a triangulation of C(m, 2d + 1).

The internal d-simplices of C(m, 2d + 1) are those in

Jd
m := {{a0, . . . , ad} ∈

	Id
m | a0 ̸= 1, ad ̸= m}.

Theorem ([Wil21a],[FR21, d = 1])
There is a bijection between triangulations of C(m, 2d + 1) and
sets of (d + 1)-subsets from Jd

m which are supporting and bridging,
given by sending a triangulation T to its set of internal d-simplices
e̊(T ).



Combinatorial description of odd-dimensional
triangulations: supports

Let X ⊆ Jd
m. We say that X is supporting if for any (d + 1)-subset

A ∈ X there is a d-subset A′ such that A′ ≀ A and, for every
(d + 1)-subset B ⊂ A ∪ A′ such that B ∈ Jd

m, we have that B ∈ X.

2 5

3 or 4

25 ∈ X =⇒
• 35 ∈ X, via 3 ≀ 25, or
• 24 ∈ X, via 4 ≀ 25.

247 ∈ X =⇒
• 257, 357 ∈ X, via 35 ≀ 247, or
• 246 ∈ X, via 36 ≀ 247.



Combinatorial description of odd-dimensional
triangulations: bridging

Let X ⊆ Jd
m. We say that X is bridging if whenever

A := {x0, . . . , xi−1, ai, . . . , aj, xj+1, . . . , xd},
B := {x0, . . . , xi−1, bi, . . . , bj, xj+1, . . . , xd} ∈ X,

where possibly i = 0 or j = d, or both, such that
{ai, . . . , aj} ≀ {bi, . . . , bj}, we have that

Sk := {x0, . . . , xi−1, ai, . . . , ak−1, bk, . . . , bj, xj+1 . . . , xd} ∈ X

for all i 6 k 6 j + 1.
246, 357 ∈ X =⇒ 247, 257 ∈ X:

247 257

246 357



Combinatorial description of odd-dimensional
triangulations: example

The cyclic polytope C(6, 3) has the following triangulations, as
described by their sets of internal 1-simplices.

{24, 25, 35}
{24, 25}
{25, 35}
{24}
{35}
∅

For the last of these triangulations, the full set of 3-simplices is

{1236, 1346, 1456}.

{25} is excluded because it is not supporting. {24, 35} is excluded
because it is not bridging.



3. The higher Stasheff–Tamari orders



The first higher Stasheff–Tamari order S1(m, δ)

Defined first by Kapranov and Voevodsky and then by Edelman
and Reiner in a different way. Thomas showed the two definitions
gave the same order.

We have that T l1 T ′ if and only if T ′ is the result of performing
an increasing bistellar flip within T .

Hence T <1 T ′ if and only if we have

T = T0 l1 T1 l1 · · ·l1 Tr = T ′.



The second higher Stasheff–Tamari order S2(m, δ)
Defined by Edelman and Reiner [ER96]. Given T , T ′ triangulations
of C(m, δ),

T 62 T ′ ⇐⇒ sT (x)δ+1 6 sT ′(x)δ+1 ∀x ∈ C(m, δ).
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The Edelman–Reiner conjecture

Edelman and Reiner conjectured that S1(m, δ) = S2(m, δ) in their
1996 paper, which they proved for δ 6 3.

It is clear that if T 61 T ′, then T 62 T ′, since an increasing
bistellar flip moves the section upwards.

But it is not clear that we always have T 61 T ′ whenever
T 62 T ′, since it is not obvious how to construct a sequence of
increasing bistellar flips from T to T ′.



Submersion sets
Edelman and Reiner give the following alternative characterisation
of the second higher Stasheff–Tamari order.

Given a simplex |A| in C(m, δ), recall the map
sA : |A| → C(m, δ + 1).

A simplex |A| is submerged by a triangulation T if

sA(x)δ+1 6 sT (x)δ+1 ∀x ∈ |A|.

The k-submersion set subk T is the set of k-simplices submerged
by the triangulation T .

Then T 62 T ′ if and only if
sub⌈δ/2⌉ T ⊆ sub⌈δ/2⌉ T ′.
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•
•

•

•



3.1. Properties



Motivation for the higher Stasheff–Tamari orders

Generalise the Tamari lattice: both S1(m, 2) and S2(m, 2) are
equal to the Tamari lattice.

S1(m, δ) is a higher category, which was the original motivation for
its introduction by Kapranov and Voevodsky [KV91].

S1(m, δ) describes the evolution of a class of KP solitons [DM12;
Wil21b], solutions to a differential equation describing solitary
waves.

S2(m, δ) gives a direct way of comparing triangulations in the first
order, if indeed the two are equal.



Rambau’s Theorem

{
Triangulations of
C(m, δ + 1)

}
←→

{
Maximal chains in
S1(m, δ)

}/
∼
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(Lack of) lattice property of the higher Stasheff–Tamari
orders

Edelman and Reiner showed that S1(m, δ) and S2(m, δ) are lattices
for δ 6 3.

Edelman, Rambau, and Reiner found a counter-example to
S2(m, δ) always being a lattice.

The same counter-example was used to show that S1(m, δ) is not
always a lattice in [Wil21a].



3.2. Equality of the orders



Result

Theorem ([Wil21c])
Let T and T ′ be triangulations of C(m, δ). Then T 61 T ′ if and
only if T 62 T ′.

The first step in proving this theorem is to give new combinatorial
interpretations of the orders which make them easier to compare.
We will see this later in the talks when we connect the higher
Stasheff–Tamari orders with representation theory of algebras.



Introduction to proof of equality

Let T and T ′ be triangulations of C(m, δ). In order to show that
T 61 T ′ if and only if T 62 T ′, we need to show that if T <2 T ′,
then there exists an increasing bistellar flip T ′′ of T such that
T ′′ 62 T ′.

This gives us T l1 T ′′ 62 T ′. Then one can inductively construct
a sequence of bistellar flips T = T0 l1 T ′′ = T1 l1 · · ·l1 Tr = T ′,
giving T 61 T ′.

The problem is that bistellar flips are quite hard to find.

Our strategy is to use induction on the number of vertices of the
cyclic polytope.



Contracting triangulations of cyclic polytopes

We consider the contraction operation [m− 1← m]. Given a
triangulation T of C(m, δ), T [m− 1← m] is the triangulation of
C(m− 1, δ) which results from moving the vertex m along the
moment curve until it coincides with the vertex m− 1.
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Main idea
We begin with two triangulations T and T ′ of C(m, δ) such that
T <2 T ′.
We consider the contractions. We have
T [m− 1← m] 62 T ′[m− 1← m].
If T [m− 1← m] = T ′[m− 1← m], then we need to consider
other contractions. Otherwise, the induction hypothesis tells us
that there is a triangulation U of C(m− 1, δ) such that
T [m− 1← m]l1 U 62 T ′[m− 1← m].
The increasing bistellar flip from T [m− 1← m] to U happens
inside some C(δ + 2, δ) subpolytope.
When we expand back to T , this subpolytope either remains
equivalent to C(δ + 2, δ), or expands to be equivalent to
C(δ + 3, δ).
In either case, we look inside this subpolytope to find an increasing
bistellar flip T ′′ of T . It can be shown that T ′′ 62 T ′.



ありがとうございました！
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