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Desingularizations
Let A be a representations finite algebra and X be a direct sum of the indecomposable
A-modules, so E = EndA(X ) is the Auslander algebra of A.
We choose a module M ∈ modA and put c = [X ,M] and d = dimk M.
Recall that existence of a short exact sequence of the form

0→ Z → Z ⊕M → N → 0

for some module Z is equivalent to existence of a right E -submodule U ⊆ HomA(X ,N) with
dimE (U) = dimE HomA(X ,M).
Inside the GLd (k)-variety

modA(d)× Grass(Homk(X , kd ), c)

consider a GLd (k)-orbit

OMX
:= {(M′,HomA(X ,M′))| M′ ∈ OM}.

Theorem (Z. 2002)

The orbit closure OMX
is a nonsingular variety consisting of the pairs (N,V ), such that

N ∈ OM and V is a right E-submodule of HomA(X ,N) with dimE (V ) = dimE HomA(X ,M).

Projection onto the first factor leads to map

pM : OMX
→ OM ,

which is projective and birational (hence pM is a desingularization).

The fibre p−1
M (N) is a coonected set for any N ∈ OM .
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Unibranch varieties

An irreducible variety X is said to be unibranch if the normalization map X̃ → X is bijective.
Since any normalization map is closed, the above condition implies that X̃ → X is a
homeomorphism. Hence unibranch varieties are topologically like normal varieties.

Example

The curve
{(x , y) ∈ k2 | x2 = y3}

is unibranch, and the curve
{(x , y) ∈ k2 | x2 = y2 + y3}

is unibranch only if char(k) = 2.

Let f : Y → X be a proper birational morphism of irreducible varieties. If Y is a unibranch
variety and the fibres of f are connected then X is a unibranch variety as well.

Corollary

Let A be a representation finite algebra and M ∈ modA. Then OM is a unibranch variety.

The above corollary generalizes to an arbitrary algebra A and a module M such that there
are, up to isomorphism, only finitely many indecomposable modules cogenerated by M
(i.e. modules L such that there is a monomorph L→ Mh for some h > 0).

Grzegorz Zwara (Toruń) Singularities of orbit closures in module varieties (part 2) February 18, 2025 3 / 12



Example

Let A = k[X ,Y ]/(XY ,X 2 − Y 2),

M = AA :

[
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

]
k4?? __

[
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

]

N :

[
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
k4?? __

[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

]

Then Sing(M,N) = Sing
(
{(x , y) ∈ k2| xy = 0}, 0

)
.

Thus OM is not unibranch at N.
Observe that dimOM = 16− dimk EndA(A) = 16− 4 = 12.

A classification of affine varieties of dimension at most 4, which appear as orbit closures of
representations or modules is known ([Rochman, 2008]), and it follows that all of them are
normal and Cohen-Macaulay. In particular, they are unibranch.

It is an open problem to find the smallest u ∈ [5, 12] such that there is an orbit closure OM

of dimennsion u which is not unibranch.
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Orbit closure, which is not a Cohen-Macaulay variety

Example

Let Q = 1 2
αoo

β
oo , d = (3, 3) and choose two scalars λ ̸= µ.

M : k3 k3

[
0 0 0
1 0 0
0 1 0

]
tt

[
1 0 0
0 0 0
0 0 1

]jj N : k3 k3

[
0 0 0
1 0 0
0 1 0

]
tt

[ 0 0 0
λ 0 0
0 µ 0

]jj

Then M = P2 ⊕ I1 degenerates to N = S1 ⊕ S2 ⊕ Uλ ⊕ Uµ and

Sing(M,N) = Sing({(x1, x2, y1, y2) ∈ k4| xiyj = 0}, 0).

In particular, OM is neither Cohen-Macaulay nor unibranch at N.
Observe that dimOM = dimGL(d)− dimk EndQ(M) = 18− 4 = 14.

It is an open problem to find the smallest u ∈ [5, 14] such that there is an orbit closure OM

of dimennsion u which is not Cohen-Macaulay.
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The invariance of geometric properties under tilting functors

Let A = kQ/I be a finite dimensional algebra and T be a tilting A-module.

Let B = EndA(T )op = kQ′/I ′. Then we have an equivalence

F = HomA(ATB ,−) : T → Y,

where T ⊂ modA is the subcategory consisting of modules L with Ext1A(T , L) = 0 and

Y ⊂ modB is the subcategory consisting of modules L with TorB1 (ATB , L) = 0.

Given a dimension vector d ∈ NQ0 , there is e ∈ NQ′
0 such that

dimB F (L) = e for any L ∈ T with dimA L = d.

Hence F induces a correspondence between the set of GL(d)-orbits in

T (d) ⊆open repQ,I (d)

and the set of GL(e)-orbits in
Y(e) ⊆open repQ′,I ′ (e).

Theorem (Bongartz, 1994)

The above correspondence induces a bijection between GL(d)-stable subsets of T (d) and
GL(e)-stable subsets of Y(e), preserving and reflecting closures, inclusions, codimensions and
types of singularities occuring in orbit closures.

Grzegorz Zwara (Toruń) Singularities of orbit closures in module varieties (part 2) February 18, 2025 6 / 12



Hom-controlled exact functors
Let F : modB → modA be an exact functor. Then

M ≤deg N =⇒ FM ≤deg FN.

Given a short exact sequence σ : 0→ U →W → V → 0 in modB and X ∈ modB we have
the induced exact sequences

0→ HomB(V ,X )→ HomB(W ,X )→ HomB(U,X )→ kδσ(X ) → 0,

0→ HomB(X ,U)→ HomB(X ,W )→ HomB(X ,V )→ kδ
′
σ(X ) → 0.

We call the functor F hom-controlled if

δFσ(FX ) = δσ(X ) and δ′Fσ(FX ) = δ′σ(X ),

for any short exact sequence σ in modB and X ∈ modB.
Equivalently, F is hom-controlled iff there is a bilinear form ξ : K0(B)× K0(B)→ Z on the
Grothendieck group K0(B) of the category modB, such that

[FX ,FY ]− [X ,Y ] = ξ(dimX , dimY ), for any X ,Y ∈ modB.

Theorem (Z. 2002)

Let F : modB → modA be a hom-controlled exact functor, where the algebra B is finite
dimensional. If ON ⊆ OM for modules M,N ∈ modB, then

Sing(FM,FN) = Sing(M,N).
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Example

Let Q = 1
α−→ 2

β←− 3 and Q′ = • ← • ← • ← •.

Then the following functor F : rep(Q)→ rep(Q′) is hom-controlled:

F(V1
Vα−−→ V2

Vβ←−− V3) = V2
( Vα 1 )←−−−−− V1 ⊕ V2

(
1 0
0 Vβ

)
←−−−−− V1 ⊕ V3

(
1
0

)
←−−− V1,

Theorem (Bobiński - Z. 2001)

Let Q be a Dynkin quiver of type Ap+q+1 with p arrows in one direction and q arrows in the
other. Then there is a hom-controlled exact functor

rep(Q)→ rep(Q′),

where Q′ is an equioriented Dynkin quiver of type Ap+2q+1.

Theorem (Lakshmibai-Magyar, 1998)

Let M be a representation of an equioriented Dynkin quiver of type A. Then OM is a normal
Cohen-Macaulay variety with rational singularities.

Corollary

Let M be a representation of a Dynkin quiver of type A. Then OM is a normal and
Cohen-Macaulay variety. It has rational singularities if char(k) = 0.
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Theorem (Bobiński - Z. 2002)

Let M be a representation of a Dynkin quiver of type D. Then OM is a normal and
Cohen-Macaulay variety. It has rational singularities if char(k) = 0.

The above theorem was proved by using Brion’s geometric results on spherical varieties, and
again applying hom-controlled functors.

Question about Dynkin quivers of type E remains open.

Theorem (Magyar, 2002)

Let M be a nilpotent representation of a cyclic quiver. Then OM is a normal Cohen-Macaulay
variety with rational singularities.

Here, immersion to affine flag varieties were used.

Theorem (Skowroński - Z. 2003)

Let M be a module over a Brauer tree algebra. Then OM is a normal and Cohen-Macaulay
variety. It has rational singularities if char(k) = 0.

The above is a consequence of mentioned Magyar’s theorem and Rickard’s results on derived
equivalences for selfinjective algebras.
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Singularities in codimension 1

Theorem (Z. 2005)

Assume that M degenerates to N and dimOM − dimON = 1. Then OM is nonsingular at any
point of ON .

Suppose the contrary, then one can conclude existence of a short exact sequence of the form

0→ Z

(
f
g

)
−−−→ Z ⊕ Y

( f h )−−−→ Z → 0,

for some indecomposable module Z and module Y such that dimOY − dimOZ = 1.

A contradiction is obtained by considering free resolutions of End(Y ) treated as a bimodule
over the algebra generated by endomorphisms gh and gfh.

Corollary

Let M be a module or a representation such that OM has only finitely many orbits. Then OM is
regular in codimension 1.

Considered example of M = AA, where A = k[X ,Y ]/(XY ,X 2 − Y 2), shows that orbit
closures can be singular in codimension 1.
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Singularities in codimension 2

Theorem (Z. 2005)

Let Q be a Dynkin quiver. Then OM is regular in codimension 2.

Example

Let A = k[X ]/(X n+1), n ≥ 1.It follows from the exact sequence

0→ k[X ]/(X n)
·X−−→ k[X ]/(X n+1)→ k[X ]/(X )→ 0

that M = k[X ]/(X n+1) degenerates to N = k[X ]/(X n)⊕ k[X ]/(X ). Moreover,
dimOM − dimON = 2 and

Sing(M,N) = Sing({(x , y , z) ∈ k3| xn+1 + yz = 0}, 0)

is the Kleinian singularity of type An.

The above theorem can not be generalized for representation-directed algebras, as Kleinian
singularity of type A1 can appear in orbit closures for modules over such algebras.
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Example

Let Q = 1 2oo
oo and Pn be the preprojective representation

kn kn−1


1 0

. . .
0 1
0 ··· 0


oo 

0 ··· 0
1 0

. . .
0 1


oo

It follows from the exact sequence

0→ P1 → P2 ⊕ Pn+2 → Pn+3 → 0

that M = P2⊕Pn+2 degenerates to N = P1⊕Pn+3, n ≥ 1. Moreover, dimOM − dimON = 2 and

Sing(M,N) = Sing({(sn, sn−1t, · · · , tn) ∈ kn+1| s, t ∈ k}, 0).

Theorem (Z. 2007)

Let Q be an extended Dynkin quiver. Assume that M degenerates to N and
dimOM − dimON = 2. Then Sing(M,N) is one of the types listed in the last two examples.
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