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Representations of quivers
Throughout the talks k will denote an allgebraically closed field (of arbitrary characteristic).
Let Q = (Q0,Q1, s, t) be a finite quiver, where Q0 is the set of vertices and Q1 is the set of
arrows:

s(α)
α−→ t(α).

Rep(Q) is the category of representations of Q:

OBJECT:

V =
(
(Vi - vector space over k )i∈Q0

, (Vα : Vs(α)
k-linear−−−−→ Vt(α))α∈Q1

)
,

MORPHISM:

f = ( fi : Vi
k-linear−−−−→Wi )i∈Q0

: V →W ,

such that the following diagram commutes for any α ∈ Q1:

Vs(α)

Vα //

fs(α)
��

Vt(α)

ft(α)
��

Ws(α)

Wα // Wt(α).

rep(Q) denotes the subcategory of finite dimensional representations in Rep(Q), and for
them the dimension vector is defined:

dimV = ( dimk Vi )i∈Q0
∈ NQ0 .
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Varieties of quiver representations

Fix a dimension vector d = (di )i∈Q0
∈ NQ0 .

repQ(d) =
{
V ∈ rep(Q) | ∀i∈Q0

Vi = kdi
}
=

∏
α∈Q1

Mdt(α)×ds(α)
(k)

is a vector space (affine space, affine variety).

Question: When two points V ,W ∈ repQ(d) are isomorphic as representations of Q ?

Answer: When they belong to the same orbit under the action of

GL(d) =
∏
i∈Q0

GLdi (k),

via
(gi )i∈Q0

∗ (Vα)α∈Q1
= (gt(α) · Vα · g−1

s(α)
)α∈Q1

.

If M ∈ rep(Q), then OM denotes the orbit in repQ(dimM) of points which are isomorphic to
M as representations of Q.

We are mainly interested in orbit closure OM , which is an affine variety, usually singular.

Given two representations M,N ∈ rep(Q) with dimM = dimN, we say that M degenerates
to N (or N is a degeneration of M) if ON ⊆ OM . Then we write M ≤deg N.

≤deg is a partial order on the set rep(Q)/ ≃ of isomorphism classes in rep(Q).
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Example

Let Q : 1
α←− 2. If M = (Mα) ∈ repQ(d1, d2) = Md1×d2 (k), then

OM = {d1 × d2 matrices of rank = rk(Mα)}

and
OM = {d1 × d2 matrices of rank ≤ rk(Mα)} .

The closure OM is a nonsingular variety iff rk(Mα) equals 0 or min(d1, d2).

Example

Let Q : 1 αbb , so the indecomposable representations in rep(Q) corresponds to Jordan blocks.

It turns out that the singular locus

Sing(OM) = OM \ OM .

Consequently, OM is nonsingular iff the orbit OM is closed, iff the representation M is semisimple,
iff the matrix Mα is diagonalizable.
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Lemma

If 0→ U → M → V → 0 is a short exact sequence in rep(Q), then M degenerates to U ⊕ V .

Proof.

For simplicity, assume that U ∈ repQ(dimU) and V ∈ repQ(dimV ).
There is M′ = (M′

α)α∈Q1
∈ OM such that

M′
α =

[
Uα Zα
0 Vα

]
for any α ∈ Q1.

Consider the affine line in repQ(dimM) consisting of points

M(t) =
([

Uα t·Zα
0 Vα

])
α∈Q1

, t ∈ k.

The claim follows from the fact that M(0) ≃ U ⊕ V while M(t) ≃ M for t ̸= 0.

Corollary

Given a filtration of representations 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mc = M, we have

M ≤deg

c⊕
i=1

Mi/Mi−1.

The orbit OM is closed iff the representation M is semisimple.

Grzegorz Zwara (Toruń) Singularities of orbit closures in module varieties (part 1) February 17, 2025 5 / 13



Let ≤ext be a partial order on the set rep(Q)/ ≃ generated by M ≤ext U ⊕ V , whenever
there is a short exact sequence 0→ U → M → V → 0 in rep(Q).

Obviously M ≤ext N implies M ≤deg N.

The converse implication does not hold in general, as M <ext N implies that N is
decomposable, while there exist proper degenerations to indecomposable representations.

Example (Riedtmann, 1986)

Let Q : 1
α //2 βbb and consider the following two indecomposable representations

M : k

[
1
0

]
//k2

[
0 0
1 0

]
bb and N : k

[
0
1

]
//k2

[
0 0
1 0

]
bb .

Then M <deg N, as M(0) = N while M(t) ≃ M for all t ̸= 0, where

M(t) : k
[ t1 ] //k2

[
0 0
1 0

]
bb .

The degenerations M <deg N also follows from existence of a short exact sequence

0→ Z

(
f
g

)
−−−→ Z ⊕M → N → 0, where Z : 0 //k2

[
0 0
1 0

]
bb .

Indeed, Coker
(
f
g

)
≃ N, while Coker

(
f+t·1Z

g

)
≃ M for almost all t ̸= 0.
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Bound quivers and algebras

Let (Q, I ) be a bound quiver, i.e. I is a two-sided ideal in the path algebra kQ of Q.

We denote by Rep(Q, I ) and rep(Q, I ) the corresponding subcategories of Rep(Q) and
rep(Q), respectively.

On a geometric level, repQ,I (d) is a closed GL(d)-subvariety of repQ(d).

Example

Let Q = 1 2
β
oo 3

γ
oo , I = (βγ) and d = (d1, d2, d3). Then

repQ,I (d) = {(Vβ ,Vγ) ∈ Md1×d2 (k)×Md2×d3 (k)| Vβ ◦ Vγ = 0}.

Given an associative k-algebra A and d ∈ N, one defines

modA(d) = {A-module structures on kd}

= {M : A→ Endk(kd )-algebra homomorphism}
= {M : A→ Md (k)-algebra homomorphism}.

The group GLd (k) acts on modA(d) via

(g ∗M)(a) = g ·M(a) · g−1 ∀ a ∈ A.
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If A is finitely generated (A = k⟨X1, · · · ,Xl ⟩/J), then

modA(d) ≃GLd (k) repQ,J((d)),

where Q is the quiver with one vertex and l loops. Hence modA(d) is an affine
GLd (k)-variety.
Assume the algebra A is finite dimensional. By the famous Gabriel’s theorem, there is a
bound quiver (Q, I ) and an equivalence

F : modA→ rep(Q, I ).

Theorem (Bongartz, 1991)

Let F be the above equivalence and M,N ∈ modA with ON ⊆ OM . Then OFN ⊆ OFM and

Sing(M,N) = Sing(FM,FN).

In other words, F preserves degeneration order and the types of corresponding singularities.
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We say that two pointed varieties (X , x0) and (Y, y0) are smoothly equivalent if there is (Z, z0)
together with two smooth morphisms

(Z, z0)

ww ''

(X , x0) (Y, y0)

In particular, Ôx0,X [[X1, · · · ,Xs ]] ≃ Ôz0,Z ≃ Ôy0,Y [[Y1, · · · ,Yt ]].
This is an equivalence relation and the equivalence classes are denoted by Sing(X , x0) and called
types of singularities.

Lemma

Assume dimx0 X − dimy0 Y = r ≥ 0. Then Sing(X , x0) = Sing(Y, y0) iff

Ôx0,X [[X1, · · · ,Xs ]] ≃ Ôy0,Y [[Y1, · · · ,Ys+r ]]

for some s ≥ 0. If char(k) = 0 then we may assume s = 0.

Example

Sing({(x , y) ∈ k2| x2 − y2 = 0}, (0, 0)) = Sing({(x , y) ∈ k2| x2 − y2 − y3 = 0}, (0, 0)).

If ON ⊆ OM for modules or representations, then we define

Sing(M,N) := Sing(OM , n0), where n0 ∈ ON .
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Characterization of degenerations

Theorem (Z., 2000)

Let M,N ∈ repQ(d). TFAE:

1 M degenerates to N (M ≤deg N)

2 ∃ a short exact sequence 0→ Z → Z ⊕M → N → 0

3 ∃ a short exact sequence 0→ N → M ⊕ Z ′ → Z ′ → 0

4 ∃ a regular map µ : k→ OM such that µ(0) ∈ ON and µ(t) ∈ OM for almost all t ∈ k.

In the above theorem, repQ(d) can be replaced by repQ,I (d), or by modA(d).

The implications (2) =⇒ (1) and (3) =⇒ (1) follow from Riedtmann’s work.

For the reverse implications one uses the fact that any point of OM can be connected with
orbit OM via an irreducible curve. In the language of A-modules, this leads to an
A-k[[t]]-bimodule W such that

W /(W · t) ≃A N and W ⊗k[[t]] k((t)) ≃ M ⊗k k((t)).

Next, one shows that

W /(W · th+1) ≃A W /(W · th)⊕M, for h large enough.
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Hom-order
Let [X ,Y ] := dimk Hom(X ,Y ) for any A-modules X and Y .

Assume that dimM = dimN. We write M ≤hom N if

[X ,M] ≤ [X ,N] and [M,X ] ≤ [N,X ]

for any (indecomposable) module X ∈ modA.

Observe that M ≤deg N implies M ≤hom N, by applying functors HomA(X ,−) and
HomA(−,X ) for a short exact sequence of the form 0→ Z → Z ⊕M → N → 0.

≤hom is a partial order on modA/ ≃, and similar definitions can be made for quiver
representations.

Example

Let

Q : 1 2
αoo

β
oo 3

γ
oo

δ
oo , I = ⟨αδ, βγ, αγ − βδ⟩,

and consider the following indecomposable representations:

M : k k2
[1,0]
oo

[0,1]
oo k

[
1
0

]
oo [

0
1

]oo , Uλ : k k
[1]

oo

[λ]
oo 0

oo
oo , Vµ : 0 k

oo
oo k

[µ]
oo

[1]
oo .

Then M ≤hom Uλ ⊕ Vµ for any λ, µ ∈ k, while M ≤deg Uλ ⊕ Vµ only if λ+ µ = 0.
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Theorem (Bongartz 1996, 1995; Z. 1998)

Let Q be a Dynkin or an extended Dynkin quiver. Then

≤ext ≡ ≤deg ≡ ≤hom

Theorem (Z. 1999)

Let A be an algebra of finite representation type. Then

≤deg ≡ ≤hom
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Idea of the proof M ≤hom N =⇒ M ≤deg N for repr. finite algebras

Let A be a representations finite algebra and X be a direct sum of the indecomposable
A-modules, so E = EndA(X ) is the Auslander algebra of A.

Existence of a short exact sequence of the form

0→ Z → Z ⊕M → N → 0

for some module Z is equivalent to existence of a right E -submodule U ⊆ HomA(X ,N) with
dimE (U) = dimE HomA(X ,M).

Hence the claim follows from the following fact:

Lemma

Let W be a right E-submodule of HomA(X ,N) such that dimE (W ) ≥ dimE HomA(X ,M).
Then there is an E-submodule U ⊆W with dimE (U) = dimE HomA(X ,M).

The above lemma can be proved by induction on dimE (W ), where the first step is obvious.

The induction step follows from existence of Auslander-Reiten sequences.
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