Singularities of orbit closures in module varieties (part 1)

Grzegorz Zwara (Toruń)

February 17, 2025

Representations of quivers

- Throughout the talks \Bbbk will denote an allgebraically closed field (of arbitrary characteristic).
- Let $Q = (Q_0, Q_1, s, t)$ be a finite quiver, where Q_0 is the set of vertices and Q_1 is the set of arrows:

$$s(\alpha) \xrightarrow{\alpha} t(\alpha)$$

• $\operatorname{Rep}(Q)$ is the category of representations of Q:

OBJECT:

$$V = \left((V_i - \text{vector space over } \Bbbk)_{i \in Q_0}, \quad (V_\alpha \colon V_{s(\alpha)} \xrightarrow{\Bbbk - \text{linear}} V_{t(\alpha)})_{\alpha \in Q_1} \right),$$

MORPHISM:

$$f = (f_i \colon V_i \xrightarrow{\Bbbk-\text{linear}} W_i)_{i \in Q_0} \colon V \to W,$$

such that the following diagram commutes for any $\alpha \in Q_1$:

$$V_{s(\alpha)} \xrightarrow{V_{\alpha}} V_{t(\alpha)}$$

$$f_{s(\alpha)} \downarrow \qquad \qquad \downarrow^{f_{t(\alpha)}}$$

$$W_{s(\alpha)} \xrightarrow{W_{\alpha}} W_{t(\alpha)}.$$

• rep(Q) denotes the subcategory of finite dimensional representations in Rep(Q), and for them the dimension vector is defined:

$$\dim V = (\dim_{\mathbb{k}} V_i)_{i \in Q_0} \in \mathbb{N}^{Q_0}.$$

Varieties of quiver representations

• Fix a dimension vector
$$\mathbf{d} = (d_i)_{i \in Q_0} \in \mathbb{N}^{Q_0}$$
.

•
$$\operatorname{rep}_{Q}(\mathbf{d}) = \{ V \in \operatorname{rep}(Q) | \forall_{i \in Q_{0}} V_{i} = \mathbb{k}^{d_{i}} \} = \prod_{\alpha \in Q_{1}} \mathbb{M}_{d_{t(\alpha)} \times d_{s(\alpha)}}(\mathbb{k})$$

is a vector space (affine space, affine variety).

- Question: When two points $V, W \in \operatorname{rep}_Q(\operatorname{\mathbf{d}})$ are isomorphic as representations of Q ?
- Answer: When they belong to the same orbit under the action of

$$\operatorname{GL}(\operatorname{\mathbf{d}}) = \prod_{i \in Q_0} \operatorname{GL}_{d_i}(\Bbbk),$$

via

$$(g_i)_{i\in Q_0} * (V_\alpha)_{\alpha\in Q_1} = (g_{t(\alpha)} \cdot V_\alpha \cdot g_{s(\alpha)}^{-1})_{\alpha\in Q_1}.$$

- If M ∈ rep(Q), then O_M denotes the orbit in rep_Q(dim M) of points which are isomorphic to M as representations of Q.
- We are mainly interested in orbit closure $\overline{\mathcal{O}}_M$, which is an affine variety, usually singular.
- Given two representations $M, N \in \operatorname{rep}(Q)$ with $\dim M = \dim N$, we say that M degenerates to N (or N is a degeneration of M) if $\mathcal{O}_N \subseteq \overline{\mathcal{O}}_M$. Then we write $M \leq_{deg} N$.
- \leq_{deg} is a partial order on the set $\operatorname{rep}(Q)/\simeq$ of isomorphism classes in $\operatorname{rep}(Q)$.

Example

Let
$$Q: 1 \xleftarrow{\alpha} 2$$
. If $M = (M_{\alpha}) \in \operatorname{rep}_Q(d_1, d_2) = \mathbb{M}_{d_1 \times d_2}(\mathbb{k})$, then
 $\mathcal{O}_M = \{d_1 \times d_2 \text{ matrices of rank } = \operatorname{rk}(M_{\alpha})\}$

and

$$\overline{\mathcal{O}}_M = \{ d_1 \times d_2 \text{ matrices of rank } \leq \operatorname{rk}(M_\alpha) \}.$$

The closure $\overline{\mathcal{O}}_M$ is a nonsingular variety iff $\operatorname{rk}(M_\alpha)$ equals 0 or $\min(d_1, d_2)$.

Example

Let $Q: 1_{\mathcal{K}} \cong \alpha$, so the indecomposable representations in rep(Q) corresponds to Jordan blocks.

It turns out that the singular locus

$$\operatorname{Sing}(\overline{\mathcal{O}}_M) = \overline{\mathcal{O}}_M \setminus \mathcal{O}_M.$$

Consequently, $\overline{\mathcal{O}}_M$ is nonsingular iff the orbit \mathcal{O}_M is closed, iff the representation M is semisimple, iff the matrix M_α is diagonalizable.

Lemma

If $0 \rightarrow U \rightarrow M \rightarrow V \rightarrow 0$ is a short exact sequence in rep(Q), then M degenerates to $U \oplus V$.

Proof.

For simplicity, assume that $U \in \operatorname{rep}_Q(\dim U)$ and $V \in \operatorname{rep}_Q(\dim V)$. There is $M' = (M'_{\alpha})_{\alpha \in Q_1} \in \mathcal{O}_M$ such that

$$M'_{lpha} = \left[egin{array}{cc} U_{lpha} & Z_{lpha} \ 0 & V_{lpha} \end{array}
ight] \qquad {
m for any } lpha \in Q_1.$$

Consider the affine line in $\operatorname{rep}_Q(\operatorname{dim} M)$ consisting of points

$$M(t) = \left(\begin{bmatrix} U_{\alpha} & t \cdot Z_{\alpha} \\ 0 & V_{\alpha} \end{bmatrix} \right)_{\alpha \in Q_1}, \quad t \in \Bbbk.$$

The claim follows from the fact that $M(0) \simeq U \oplus V$ while $M(t) \simeq M$ for $t \neq 0$.

Corollary

• Given a filtration of representations $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_c = M$, we have

$$M \leq_{deg} \bigoplus_{i=1}^{c} M_i/M_{i-1}.$$

• The orbit \mathcal{O}_M is closed iff the representation M is semisimple.

- Let \leq_{ext} be a partial order on the set $rep(Q)/\simeq$ generated by $M \leq_{ext} U \oplus V$, whenever there is a short exact sequence $0 \to U \to M \to V \to 0$ in rep(Q).
- Obviously $M \leq_{ext} N$ implies $M \leq_{deg} N$.
- The converse implication does not hold in general, as $M <_{ext} N$ implies that N is decomposable, while there exist proper degenerations to indecomposable representations.

Example (Riedtmann, 1986)

Let $Q: 1 \xrightarrow{\alpha} 2_{\kappa} \beta$ and consider the following two indecomposable representations

$$M: k \xrightarrow{\begin{bmatrix} 1\\0 \end{bmatrix}} k_{\mathcal{K}}^{2} \begin{bmatrix} 0 & 0\\1 & 0 \end{bmatrix} \quad \text{and} \quad N: k \xrightarrow{\begin{bmatrix} 0\\1 \end{bmatrix}} k_{\mathcal{K}}^{2} \begin{bmatrix} 0 & 0\\1 & 0 \end{bmatrix}$$

Then $M <_{deg} N$, as M(0) = N while $M(t) \simeq M$ for all $t \neq 0$, where

$$M(t): k \xrightarrow{\begin{bmatrix} t \\ 1 \end{bmatrix}} k_{\kappa}^{2} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

The degenerations $M <_{deg} N$ also follows from existence of a short exact sequence

$$0 \to Z \xrightarrow{\begin{pmatrix} f \\ g \end{pmatrix}} Z \oplus M \to N \to 0, \quad \text{where} \quad Z: 0 \longrightarrow k_{\kappa}^{2} \xrightarrow{\left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right]}.$$

Indeed, Coker $\begin{pmatrix} f \\ g \end{pmatrix} \simeq N$, while Coker $\begin{pmatrix} f+t\cdot 1_Z \\ g \end{pmatrix} \simeq M$ for almost all $t \neq 0$.

Bound quivers and algebras

r

- Let (Q, I) be a bound quiver, i.e. I is a two-sided ideal in the path algebra kQ of Q.
- We denote by $\operatorname{Rep}(Q, I)$ and $\operatorname{rep}(Q, I)$ the corresponding subcategories of $\operatorname{Rep}(Q)$ and $\operatorname{rep}(Q)$, respectively.
- On a geometric level, $\operatorname{rep}_{Q,l}(\mathbf{d})$ is a closed $\operatorname{GL}(\mathbf{d})$ -subvariety of $\operatorname{rep}_Q(\mathbf{d})$.

Example

Let
$$Q = 1 \xleftarrow{\beta}{2} \xleftarrow{\gamma}{3}$$
, $I = (\beta \gamma)$ and $\mathbf{d} = (d_1, d_2, d_3)$. Then

$$\mathsf{ep}_{Q,I}(\mathsf{d}) = \{ (V_\beta, V_\gamma) \in \mathbb{M}_{d_1 \times d_2}(k) \times \mathbb{M}_{d_2 \times d_3}(k) | \ V_\beta \circ V_\gamma = 0 \}.$$

• Given an associative \Bbbk -algebra A and $d \in \mathbb{N}$, one defines

$$\begin{split} \mathsf{mod}_A(d) &= \{A\text{-module structures on } \mathbb{k}^d\} \\ &= \{M : A \to \mathsf{End}_{\mathbb{k}}(\mathbb{k}^d)\text{-algebra homomorphism}\} \\ &= \{M : A \to \mathbb{M}_d(\mathbb{k})\text{-algebra homomorphism}\}. \end{split}$$

• The group $\operatorname{GL}_d(\Bbbk)$ acts on $\operatorname{mod}_A(d)$ via

$$(g * M)(a) = g \cdot M(a) \cdot g^{-1} \qquad \forall a \in A.$$

7/13

• If A is finitely generated $(A = \Bbbk \langle X_1, \cdots, X_l \rangle / J)$, then

$$\operatorname{mod}_A(d) \simeq_{\operatorname{GL}_d(\Bbbk)} \operatorname{rep}_{Q,J}((d)),$$

where Q is the quiver with one vertex and I loops. Hence $\text{mod}_A(d)$ is an affine $\text{GL}_d(\Bbbk)$ -variety.

• Assume the algebra A is finite dimensional. By the famous Gabriel's theorem, there is a bound quiver (Q, I) and an equivalence

$$\mathcal{F}$$
: mod $A \to \operatorname{rep}(Q, I)$.

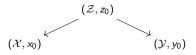
Theorem (Bongartz, 1991)

Let \mathcal{F} be the above equivalence and $M, N \in \text{mod } A$ with $\mathcal{O}_N \subseteq \overline{\mathcal{O}}_M$. Then $\mathcal{O}_{\mathcal{F}N} \subseteq \overline{\mathcal{O}}_{\mathcal{F}M}$ and

 $\operatorname{Sing}(M, N) = \operatorname{Sing}(\mathcal{F}M, \mathcal{F}N).$

In other words, \mathcal{F} preserves degeneration order and the types of corresponding singularities.

We say that two pointed varieties (\mathcal{X}, x_0) and (\mathcal{Y}, y_0) are *smoothly equivalent* if there is (\mathcal{Z}, z_0) together with two smooth morphisms



In particular, $\widehat{\mathcal{O}}_{x_0,\mathcal{X}}[\![X_1,\cdots,X_s]\!] \simeq \widehat{\mathcal{O}}_{z_0,\mathcal{Z}} \simeq \widehat{\mathcal{O}}_{y_0,\mathcal{Y}}[\![Y_1,\cdots,Y_t]\!]$. This is an equivalence relation and the equivalence classes are denoted by Sing (\mathcal{X}, x_0) and called *types of singularities*.

Lemma

Assume dim_{$$x_0$$} $\mathcal{X} - \dim_{y_0} \mathcal{Y} = r \ge 0$. Then Sing $(\mathcal{X}, x_0) = \text{Sing}(\mathcal{Y}, y_0)$ iff

$$\widehat{\mathcal{O}}_{x_0,\mathcal{X}}\llbracket X_1,\cdots,X_s\rrbracket\simeq \widehat{\mathcal{O}}_{y_0,\mathcal{Y}}\llbracket Y_1,\cdots,Y_{s+r}\rrbracket$$

for some $s \ge 0$. If char(k) = 0 then we may assume s = 0.

Example

$$\mathsf{Sing}(\{(x,y) \in \Bbbk^2 | x^2 - y^2 = 0\}, (0,0)) = \mathsf{Sing}(\{(x,y) \in \Bbbk^2 | x^2 - y^2 - y^3 = 0\}, (0,0)).$$

If $\mathcal{O}_N \subseteq \overline{\mathcal{O}}_M$ for modules or representations, then we define

$$\operatorname{Sing}(M,N) := \operatorname{Sing}(\overline{\mathcal{O}}_M,n_0), \quad \text{where} \quad n_0 \in \mathcal{O}_N.$$

Characterization of degenerations

Theorem (Z., 2000)

Let $M, N \in \operatorname{rep}_Q(\mathbf{d})$. TFAE:

- M degenerates to N ($M \leq_{deg} N$)
- ② ∃ a short exact sequence $0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$
- § \exists a short exact sequence $0 \to N \to M \oplus Z' \to Z' \to 0$
- **9** \exists a regular map $\mu : \mathbb{k} \to \overline{\mathcal{O}}_M$ such that $\mu(0) \in \mathcal{O}_N$ and $\mu(t) \in \mathcal{O}_M$ for almost all $t \in \mathbb{k}$.
- In the above theorem, $\operatorname{rep}_Q(\mathbf{d})$ can be replaced by $\operatorname{rep}_{Q,I}(\mathbf{d})$, or by $\operatorname{mod}_A(d)$.
- The implications (2) \implies (1) and (3) \implies (1) follow from Riedtmann's work.
- For the reverse implications one uses the fact that any point of O
 _M can be connected with orbit O_M via an irreducible curve. In the language of A-modules, this leads to an A-k[[t]]-bimodule W such that

$$W/(W \cdot t) \simeq_A N$$
 and $W \otimes_{\Bbbk[[t]]} \Bbbk((t)) \simeq M \otimes_{\Bbbk} \Bbbk((t)).$

Next, one shows that

$$W/(W \cdot t^{h+1}) \simeq_A W/(W \cdot t^h) \oplus M$$
, for *h* large enough.

Hom-order

- Let $[X, Y] := \dim_{\mathbb{K}} \operatorname{Hom}(X, Y)$ for any A-modules X and Y.
- Assume that $\dim M = \dim N$. We write $M \leq_{hom} N$ if

 $[X, M] \leq [X, N]$ and $[M, X] \leq [N, X]$

for any (indecomposable) module $X \in \text{mod } A$.

- Observe that $M \leq_{deg} N$ implies $M \leq_{hom} N$, by applying functors $\text{Hom}_A(X, -)$ and $\text{Hom}_A(-, X)$ for a short exact sequence of the form $0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$.
- \leq_{hom} is a partial order on mod A/\simeq , and similar definitions can be made for quiver representations.

Example

Let

$$Q: 1 { \swarrow lpha \ } 2 { \swarrow \ lpha \ } 3, \qquad I = \langle lpha \delta, eta \gamma, lpha \gamma - eta \delta
angle,$$

and consider the following indecomposable representations:

$$M: k \not\leftarrow \begin{bmatrix} [1,0] \\ 0 \end{bmatrix} k^2 \not\leftarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} k, \qquad U_{\lambda}: k \not\leftarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} k \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{bmatrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\leftarrow \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \\ K} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \begin{bmatrix} \mu \end{matrix} k}_{[1]} k \cdot \underbrace{V_{\mu}: 0 \not\vdash \\ K} k \cdot \underbrace{V} k \not\vdash \\ K} k \cdot \underbrace{V_{\mu}: 0$$

Then $M \leq_{hom} U_{\lambda} \oplus V_{\mu}$ for any $\lambda, \mu \in \mathbb{k}$, while $M \leq_{deg} U_{\lambda} \oplus V_{\mu}$ only if $\lambda + \mu = 0$.

Theorem (Bongartz 1996, 1995; Z. 1998)

Let Q be a Dynkin or an extended Dynkin quiver. Then

$$\leq_{ext} \equiv \leq_{deg} \equiv \leq_{hom}$$

Theorem (Z. 1999)

Let A be an algebra of finite representation type. Then

$$\leq_{deg} \equiv \leq_{hom}$$

Idea of the proof $M \leq_{hom} N \implies M \leq_{deg} N$ for repr. finite algebras

- Let A be a representations finite algebra and X be a direct sum of the indecomposable A-modules, so $E = \text{End}_A(X)$ is the Auslander algebra of A.
- Existence of a short exact sequence of the form

$$0 \to Z \to Z \oplus M \to N \to 0$$

for some module Z is equivalent to existence of a right E-submodule $U \subseteq \text{Hom}_A(X, N)$ with $\dim_E(U) = \dim_E \text{Hom}_A(X, M)$.

• Hence the claim follows from the following fact:

Lemma

Let W be a right E-submodule of $\text{Hom}_A(X, N)$ such that $\dim_E(W) \ge \dim_E \text{Hom}_A(X, M)$. Then there is an E-submodule $U \subseteq W$ with $\dim_E(U) = \dim_E \text{Hom}_A(X, M)$.

- The above lemma can be proved by induction on $\dim_E(W)$, where the first step is obvious.
- The induction step follows from existence of Auslander-Reiten sequences.